bài 1: CMR: a2+b2+c2>=ab+ac+bc với mọi a; b; c
cac ban oi diup minh di ma
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
Đề bài sai, phản ví dụ: \(a=b=0,c=1\)
BĐT này chỉ đúng khi a;b;c là độ dài 3 cạnh của 1 tam giác
BPT <=> a^2 + b^2 + c^2 - ab - bc - ca >=0
=> 2 (a^2 + b^2 + c^2 - ab - bc -ca)>=0
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc- 2ac >=0
=> a^2 - 2ab + b^2 + b^2 - 2bc+ c^2 + c^2 - 2ac +a^2 >0
=> ( a - b)^2 + ( b- c)^2 + ( c-a)^2 >0
Luôn đúng
Dấu '=' xảy ra khi a = b= c