Không dùng máy tính,hãy so sánh: A= 2011^2010+1/2011^2011+1 với B= 2011^2011+1/2011^2012+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy
\(\dfrac{2010}{2011}< 1\)
\(\dfrac{2011}{2012}< 1\)
\(\dfrac{2012}{2013}< 1\)
\(\dfrac{2013}{2014}< 1\)
=> Tổng M của những phân số trên sẽ nhỏ hơn 1
=> M < 1
\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}+\dfrac{2013}{2011}\)
=1-\(\dfrac{1}{2011}\)+1\(-\dfrac{1}{2012}\)+1-\(\dfrac{1}{2013}\)+1-\(\dfrac{1}{2011}\)
=4-(\(\dfrac{2}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\)) < 4
m=\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}+\dfrac{2013}{2011}\)
=\(1-\dfrac{1}{2011}+1-\dfrac{1}{2012}+1-\dfrac{1}{2013}+1+\dfrac{2}{2011}\)
=4+\(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\)
vì:
do \(\dfrac{1}{2011}< 1\)
\(\dfrac{1}{2012}< 1\)
\(\dfrac{1}{2013}< 1\)
nên \(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 1-1-1=-1\)
hay \(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 0\)
nên 4+\(\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}< 4\)
vậy tổng m <4
bài này mình tưởng phải lên cấp 2 mới có thế mà mấy em lớp 4 đã phải làm á
Đặt \(A=\frac{2011^{2010}+1}{2011^{2011}+1}\Rightarrow2011A=\frac{2011^{2011}+2011}{2011^{2011}+1}=1+\frac{2010}{2011^{2011}+1}\)
\(B=\frac{2011^{2011}+1}{2011^{2012}+1}\Rightarrow2011B=\frac{2011^{2012}+2011}{2011^{2012}+1}=1+\frac{2010}{2011^{2012}+1}\)
\(2011^{2011}+1< 2011^{2012}+1\)
\(\Rightarrow\frac{2010}{2011^{2011}+1}>\frac{2010}{2011^{2012}+1}\)
\(\Rightarrow2011A>2011B\Rightarrow A>B\)
\(\Rightarrow\frac{2011^{2010}+1}{2011^{2011}+1}>\frac{2011^{2011}+1}{2011^{2012}+1}\)
Giải
Ta có: 2011.2013= 2011.(2012+1)
= 2011.2012+ 2011
Ta có: 2012.2012 = (2011+1).2012
= 2011.2012+2012
Do: 2011.2012=2011.2012 mà 2011 < 2012
=> 2011.2012+2011 < 2011.2012+2012
=> 2011.2013 < 2012.2012
Duyệt đi, chúc bạn học giỏi
\(\frac{2010}{2011}\)+\(\frac{2011}{2012}\)+\(\frac{2012}{2013}\)+\(\frac{2013}{2011}\)
= 1 -\(\frac{1}{2011}\)+ 1 -\(\frac{1}{2012}\)+ 1 -\(\frac{1}{2013}\)+ 1 + \(\frac{2}{2011}\)
= 4 + \(\frac{1}{2011}\)-\(\frac{1}{2012}\)-\(\frac{1}{2013}\)< 4
????
Vì 20112011<20112012 =>20112011 +1<20112012 +1
=> 20112011+1/20112012+1 <1
=>B<1
=>B=20112011+1/20112012+1<20112011+1+2010/20112012+1+2010
=>B<20112011+2011/20112012+2011=20112010.2011+2011/20112011.2011+2011=2011.(20112010+1)/2011.(20112011+1)
=>B<20112010+1/20112011+1=A
=>B<A
Vậy B<A