OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Mini game 20/11 tri ân thầy cô, nhận thưởng hấp dẫn - Tham gia ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
định m để bất pt sau có nghiệm duy nhất
\(\begin{cases}\left(m-1\right)x-m\le2x+1\\2mx\le2m-x\end{cases}\)
hệ :\(\Leftrightarrow\begin{cases}\left(m-3\right)x\le m+1\\\left(2m+1\right)\le2m\end{cases}\)
suy ra hệ này có nghiệm duy nhất:
\(\Leftrightarrow\frac{m+1}{m-3}=\frac{2m}{2m+1}\Leftrightarrow\)\(\left(m+1\right)\left(2m+1\right)=2m\left(m-3\right)\)
\(\Leftrightarrow2m^2+m+2m+1=2m^2-6m\)
\(\Leftrightarrow m=-\frac{1}{9}\in\left(-\frac{1}{2};3\right)\)
nếu \(m=3\) thì hệ \(\Leftrightarrow\begin{cases}0\le4\\7x\le6\end{cases}\)có vô số nghiệm
nếu \(m=-\frac{1}{2}\) thì hệ \(\Leftrightarrow\begin{cases}-\frac{7}{2}x\le\frac{1}{2}\\0\le-1\end{cases}\) vô nghiệm
vậy \(m=-\frac{1}{9}\) là giá trị cần tìm
hệ :⇔{(m−3)x≤m+1(2m+1)≤2m⇔{(m−3)x≤m+1(2m+1)≤2m
⇔m+1m−3=2m2m+1⇔⇔m+1m−3=2m2m+1⇔(m+1)(2m+1)=2m(m−3)(m+1)(2m+1)=2m(m−3)
⇔2m2+m+2m+1=2m2−6m⇔2m2+m+2m+1=2m2−6m
⇔m=−19∈(−12;3)⇔m=−19∈(−12;3)
nếu m=3m=3 thì hệ ⇔{0≤47x≤6⇔{0≤47x≤6có vô số nghiệm
nếu m=−12m=−12 thì hệ ⇔{−72x≤120≤−1⇔{−72x≤120≤−1 vô nghiệm
vậy m=−19m=−19 là giá trị cần tìm
Cho hệ pt:\(\hept{\begin{cases}3x+\left(m-1\right)y=12\\\left(m-1\right)x+12y=4\end{cases}}\)a) Tìm m để hệ có nghiệm duy nhất thỏa mãn x + y = -1b) Tìm m để hệ có nghiệm duy nhất là nghiệm nguyên
cho hệ PT:
\(\hept{\begin{cases}\left(m+1\right)x-\left(m-1\right)y=4m\\x+\left(m-2\right)y=2\end{cases}}\)
tìm đk của m để pt cs nghiệm duy nhất. tìm nghiệm duy nhất đó
ai nhanh mk tick
\(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)a) tìm m để hệ pt có nghiệm duy nhất (x;y) t/m x+y=3
Giải hệ PT \(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)
a) Giải hệ PT khi m = -1
b) Tìm m để hệ PT có nghiệm duy nhất thỏa mãn x+y=3
Tìm điều kiện của m để hệ PT \(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
có nghiệm duy nhất trong trường hợp đó M(x;y) luôn thuộc 1 đường thẳng cố định
hệ :\(\Leftrightarrow\begin{cases}\left(m-3\right)x\le m+1\\\left(2m+1\right)\le2m\end{cases}\)
suy ra hệ này có nghiệm duy nhất:
\(\Leftrightarrow\frac{m+1}{m-3}=\frac{2m}{2m+1}\Leftrightarrow\)\(\left(m+1\right)\left(2m+1\right)=2m\left(m-3\right)\)
\(\Leftrightarrow2m^2+m+2m+1=2m^2-6m\)
\(\Leftrightarrow m=-\frac{1}{9}\in\left(-\frac{1}{2};3\right)\)
nếu \(m=3\) thì hệ \(\Leftrightarrow\begin{cases}0\le4\\7x\le6\end{cases}\)có vô số nghiệm
nếu \(m=-\frac{1}{2}\) thì hệ \(\Leftrightarrow\begin{cases}-\frac{7}{2}x\le\frac{1}{2}\\0\le-1\end{cases}\) vô nghiệm
vậy \(m=-\frac{1}{9}\) là giá trị cần tìm
hệ :⇔{(m−3)x≤m+1(2m+1)≤2m⇔{(m−3)x≤m+1(2m+1)≤2m
suy ra hệ này có nghiệm duy nhất:
⇔m+1m−3=2m2m+1⇔⇔m+1m−3=2m2m+1⇔(m+1)(2m+1)=2m(m−3)(m+1)(2m+1)=2m(m−3)
⇔2m2+m+2m+1=2m2−6m⇔2m2+m+2m+1=2m2−6m
⇔m=−19∈(−12;3)⇔m=−19∈(−12;3)
nếu m=3m=3 thì hệ ⇔{0≤47x≤6⇔{0≤47x≤6có vô số nghiệm
nếu m=−12m=−12 thì hệ ⇔{−72x≤120≤−1⇔{−72x≤120≤−1 vô nghiệm
vậy m=−19m=−19 là giá trị cần tìm