K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2020

Đặt A = ( 3 + 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )

=> 2A = 2.( 3 + 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )

          = ( 3 - 1 )( 3 + 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )

          = ( 32 - 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )

          = ( 34 - 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )

          = ( 38 - 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )

          = ( 316 - 1 )( 316 + 1 )( 332 + 1 )

          = ( 332 - 1 )( 332 + 1 )

          = 364 - 1

2A = 364 - 1 => A = \(\frac{3^{64}-1}{2}\)

15 tháng 10 2023

\(4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^{16}-1\right)\cdot\left(3^{16}+1\right)\)

\(=\dfrac{1}{2}\left(3^{32}-1\right)\)

25 tháng 9 2021

a) \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)< 3^{32}-1=B\)

b) \(A=2011.2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2=B\)

17 tháng 6 2018

22 tháng 10 2020

a) Ta có : 2005.2007 = (2006 - 1)(2006 + 1) = 20062 - 12 = 20062 - 1 ( cái khúc này sửa : 2005.2001 thành 2005.2007)

Mà B = 20062

=> 20062 - 1 < 20062 

=> A < B

b) Ta có : B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B =  (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (24 - 1)(24 + 1)(28 + 1)(216 + 1)

                B = (28 - 1)(28 + 1)(216 + 1) = (216 - 1)(216 + 1) = 232 - 1

Mà C = 232

=> B < C 

c) Tương tự như câu b

12 tháng 9 2021

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}.\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)=\dfrac{3^{32}}{2}-\dfrac{1}{2}\)

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{3^{32}-1}{2}\)

16 tháng 12 2023

a, 3.7.23 - 21.(-17)

= 21.23  + 21.17

= 21.(23 + 17)

= 21.40

= 840

b, 7.6.3 - 7.[(-34) + 18)]

= 7.18 - 7.18 + 34.7

= 34.7

= 238

16 tháng 12 2023

c, 71.64 + 32.(-7) - 13.32

= 71. 32 . 2 - 7.32 - 32. 13

= 32.(71.2 - 7 - 13)

= 32. (142 - 20)

= 32.122

=  3904

d, 13.(23 - 17) - 13.(23 + 17)

= 13.23 - 13.17 - 13.23 - 13.17

= (13.23 - 13.23) - (13.17 + 13.17)

= - 2.13.17

= - 26.17

= -442

 

16 tháng 8 2023

B = 1 + 32 + 34 + … + 32018

32.B = 32.( 1 + 32 + 34 + … + 32018)

9B = 32 + 34 + 36 + … + 32020

9B – B = (32 + 34 + 36 + … + 32020) – (1 + 32 + 34 + … + 32018)

8B = 32020 – 1

B = (32020 – 1) : 8.

Vậy B = (32020 – 1) : 8.

16 tháng 8 2023

tick cho mink nhé (●'◡'●)

1 tháng 3 2023

Theo đề bài ra, ta có :

`A=1+32+34+36+....+32008`

\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`

`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`

\(\Rightarrow\) `8A=(-1)+32010`

\(\Rightarrow\) `8A-32010=(-1)`

@Nae

1 tháng 3 2023

`1+32+34+36?` Đề nào cho đấy?

1 tháng 8 2023

\(D=1+3+3^2+3^3+3^4+...+3^{2022}\)

\(3D=3.\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)

\(3D=3+3^2+3^3+3^4+3^5+...+3^{2023}\)

\(3D-D=\left(3+3^2+3^3+3^4+3^5+...+3^{2023}\right)-\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)

\(2D=\left(3^{2023}-1\right)\)

\(D=\left(3^{2023}-1\right):2\)

3D=3+3^2+...+3^2023

=>2D=3^2023-1

=>\(D=\dfrac{3^{2023}-1}{2}\)