Tìm n
\(8^n\div2^n=16^{2011}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi bn , mk còn thiếu 1 câu :
\(8^{14}=4^N\)
\(\Rightarrow N=14.2\)
\(\Rightarrow N=28\)
a,\(8:2^N=2\)
\(2^N=8:2\)
\(2^N=4\)
\(2^N=2^2\)
b, \(8^n:2^n=4\)
\(\Rightarrow n=1\)
\(8^n:2^n=16^{2011}\)
\(\left(2^3\right)^n:2^n=\left(2^4\right)^{2011}\)
\(2^{3n}:2^n=2^{8044}\)
\(2^{3n-n}=2^{8044}\)
\(\Rightarrow3n-n=8044\)
\(2n=8044\)
\(\Rightarrow n=\frac{8044}{2}\)
\(n=4022\)
Vậy \(n=4022\)
\(\left(2^3\right)^n\)\(:2^n\)\(=\left(2^4\right)^{2021}\)
\(2^{3n}\)\(:2^n\)\(=2^{4x2021}\)\(=2^{8084}\)
\(2^{3n-n}\)\(=2^{8084}\)
\(=>3n-n=8084\)
\(2n=8084\)
\(n=8084:2=4042\)
\(=>n=4042\)
\((11:21)2×(32010−3):3+3=35n+5⇒32010−3+3=35n+5\)
\(⇒32010=35n+5⇒5n+5=2010⇒5n=2005⇒n=401\)
\(2\times\left(3^{2010}-3\right):3+3=3^{5n+5}\)
\(\Rightarrow3^{2010}-3+3=3^{5n+5}\)
\(\Rightarrow3^{2010}=3^{5n+5}\)
\(\Rightarrow5n+5=2010\)
\(\Rightarrow5n=2005\)
\(\Rightarrow n=401\)
a) Ta có: \(8^n:2^n=16^{2011}\)
\(\Leftrightarrow4^n=\left(4^2\right)^{2011}\)
\(\Leftrightarrow n=4022\)
b) Ta có: \(2^n+2^{n+3}=144\)
\(\Leftrightarrow2^n\left(1+2^3\right)=144\)
\(\Leftrightarrow2^n=16\)
hay n=4
\(8^n\div2^n=16^{2011}\)
\(\left(8\div2\right)^n=\left(4^2\right)^{2011}\)
\(4^n=4^{4022}\)
\(\Rightarrow n=4022\)
mình nghĩ ý b là
\(2^n+2^{n+3}=144\)
\(2^n+2^n\cdot2^3=144\)
\(2^n\left(1+8\right)=144\)
\(2^n\cdot9=144\)
\(2^n=16\)
\(2^n=2^4\)
\(\Rightarrow n=4\)