Cho A = 40 + 41 + 42 + 43 + ... + 423. Hãy so sánh 3A +1 voi 637
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Cân nặng (kg) | 39 | 40 | 41 | 42 | 43 | 45 |
Số học sinh | 1 | 4 | 3 | 4 | 1 | 2 |
b. Có 2 bạn cân nặng 45 kilogam.
\(b,\)Vì p là SNT > 3 => p có dạng : 3k + 1 ; 3k + 2 ( k thuộc N)
Với p = 3k + 1
\(=>\left(3k+2\right)\left(3k\right)⋮3\)(1)
Với p = 3k + 2
\(=>\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)
Từ (1) và (2) => ĐPCM
a:
Cân nặng | 39 | 40 | 41 | 42 | 43 | 45 |
số lượng | 1 | 4 | 3 | 4 | 1 | 2 |
N=15
c: Cân nặng trung bình là:
\(\dfrac{39\cdot1+40\cdot4+41\cdot3+42\cdot4+43+45\cdot2}{15}\simeq41,5\left(kg\right)\)
Lời giải:
$A=1+4+4^2+4^3+....+4^{23}$
$4A=4+4^2+4^3+4^4+...+4^{24}$
$\Rightarrow 4A-A=4^{24}-1$
$\Rightarrow 3A+1=4^{24}=(4^3)^8=64^8> 63^7$
\(B=\frac{23^{41}+1}{23^{42}+1}\)
Vì B < 1
\(\Rightarrow B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23(23^{40}+1)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
P/s: Hoq chắc
ta có
\(B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23\left(23^{40}+1\right)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
\(\Rightarrow B< A\)
4A=4.(1+4+4^2+4^3+........+4^23)
4A-1=(4+4^2+4^3+4^4+........+4^23+4^24)
-(1+4^1+4^2+4^3+.........+4^23)
=>3A=4^24-1
=3A+1=4^24
Vì 3A+1=4^24=(4^3)^8=64^8>63^7 (Cơ số lớn hơn , số mũ lớn hơn)
Vậy 3A+1>63^7