K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2016

a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)

Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)

Để PT (1) thì PT(2) vô nghiệm:

Để PT(2) vô nghiệm thì: \(\Delta=\left(1-2m\right)^2-4.\left(m^2-1\right)<0\Leftrightarrow1-4m+4m^2-4m^2+4<0\)

<=>5-4m<0

<=>m>5/4

b)Để PT(1) có 2 nghiệm phân biệt thì PT(2) có duy nhất 1 nghiệm

Để PT(2) có duy nhất 1 nghiệm thì:

\(\Delta=5-4m=0\Leftrightarrow m=\frac{5}{4}\)

c)Để PT(1) có 4 nghiệm phân biệt thì PT(2) có 2 nghiệm phân biệt:

Để PT(2) có 2 nghiệm phân biệt thì:

\(\Delta=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)

Mem đây ko rành lắm sai bỏ qua

12 tháng 7 2018

Đáp án B

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

22 tháng 5 2018

Phương trình (1) vô nghiệm khi phương trình (2) có 2 nghiệm số âm hoặc vô nghiệm.

Nếu phương trình (2) có 2 nghiệm âm thì theo hệ thức Vi-ét ta có:

t 1 + t 2  = 13 > 0 vô lý

Vậy phương trình (1) vô nghiệm khi phương trình (2) vô nghiệm.

Suy ra: ∆ = 169 - 4m < 0 ⇔ m > 169/4}

1 tháng 12 2021

Đk để pt trên có 2 nghiệm phân biệt x1,x2 : a>0 và denta>0

suy ra denta= (2m+1)^2-4.(m^2+1)>0

suy ra : m>3/4

Ta có P=x1x2/x1+x2=(m^2+1)/(2m+1)

 Ta có: P∈Z

⇒4P∈Z

⇒(4m^2+4)/2m+1=(2m-1)+5/2m+1∈Z

⇒2m+1=Ư(5)={−5;−1;1;5}

⇒m={−3;−1;0;2} 

Kết hợp đk m>3/4 ta được m=2

 

 

NV
16 tháng 1 2021

\(\Delta=\left(m+1\right)^2-4\left(m^2-2m+2\right)=-3m^2+10m-7\ge0\)

\(\Rightarrow1\le m\le\dfrac{7}{3}\)

\(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m^2-2m+2\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m+1\right)^2-2\left(m^2-2m+2\right)\)

\(=-m^2+6m-3\)

\(=\left(-m^2+6m-\dfrac{77}{9}\right)+\dfrac{50}{9}\)

\(=\left(\dfrac{11}{3}-m\right)\left(m-\dfrac{7}{3}\right)+\dfrac{50}{9}\le\dfrac{50}{9}\)

\(P_{max}=\dfrac{50}{9}\) khi \(m=\dfrac{7}{3}\)

Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)

\(\Leftrightarrow m^2+2m< 0\)

\(\Leftrightarrow m^2+2m+1< 1\)

\(\Leftrightarrow\left(m+1\right)^2< 1\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)

Ta có: \(\Delta'=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét: \(x_1x_2=m^2+2m\)

Để phương trình có 2 nghiệm trái dấu 

\(\Leftrightarrow m^2+2m< 0\) \(\Leftrightarrow-2< m< 0\)

Vậy để phương trình có 2 nghiệm trái dấu thì \(-2< m< 0\)

8 tháng 5 2019

 

PT x 2 − 2 m + 1 x + m 2 − 1 = 0     ( 1 ) có 2 nghiệm phân biệt x 1 , x 2

 

Theo Vi-et ta có:  x 1 + x 2 = 2 m + 1 x 1 x 2 = m 2 − 1

Ta có:  x 1 2 + x 2 2 + 8 x 1 x 2 = x 1 + x 2 2 + 6 x 1 x 2 = 2 m + 1 2 + 6 m 2 − 1

= 10 m 2 + 2 5 m + 1 25 − 27 5 = 10 m + 1 5 2 − 27 5

⇒ x 1 2 + x 2 2 + 8 x 1 x 2 ≥ − 27 5

Dấu ‘=’ xảy ra khi m = − 1 5 (thỏa mãn (*))

Vậy x 1 2 + x 2 2 + 8 x 1 x 2 đạt giá trị nhỏ nhất khi  m = − 1 5

Đáp án cần chọn là: C

 

6 tháng 3 2023

học tốt nhé !

6 tháng 3 2023

2 nghiệp pt phải:

 (2m - 1)2-4(m2 - 1)≥0

Vì x1 là nghiệm nên

x21−(2m−1)x1+m2−1=0

<=> x12−(2m−1)x1+m2−1=0

<=>x12−2mx1+m2=x1+1

<=> 9m2=0 <=>m=0

#YQ

6 tháng 3 2023

9m2=0 là sao ạ

a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)

\(=4m^2+8m+4-4m^2+8m+12\)

=16m+16

Để phương trình luôn có nghiệm thì 16m+16>=0

hay m>=-1

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)

\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)

\(\Leftrightarrow m^2+14m-15=0\)

=>(m+15)(m-1)=0

=>m=1

12 tháng 3 2022

undefined