Cho n thuộc Z* và a,b . Biết trong khai triển nhị thức niuton ((a/ cănb) + b) ^n có hạng từ chứa a^4b^9, tìm số hạng chứa tích a,b với số mũ bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Vậy n = 10.
Ta có số hạng tổng quát trong khai triển trên là
Vì a là hệ số của số hạng không chứa x trong khai triển nên ta cho
ta có : \(\left(2nx+\dfrac{1}{2nx^2}\right)^{3n}=\sum\limits^{3n}_{k=0}C^k_{3n}\left(2nx\right)^{3n-k}\left(\dfrac{1}{2nx^2}\right)^k\)
\(=\sum\limits^{3n}_{k=0}C^k_{3n}2^{3n-2k}\left(n\right)^{3n-2k}\left(x\right)^{3n-3k}\)
\(\Rightarrow\) tổng hệ số bằng : \(C^0_{3n}+C_{3n}^1+C^2_{3n}+...+C^{3n}_{3n}=64\)
\(\Leftrightarrow\left(1+1\right)^{3n}=64\Leftrightarrow2^{3n}=2^6\Rightarrow n=2\)
để có số hạng không chữa \(x\) không khai triển thì \(3n-3k=0\Leftrightarrow n=k\)
\(\Rightarrow\) hệ số của số hạng không chữa \(x\) là \(C^2_6.2^2.2^2=240\)
vậy ...........................................................................................................................
Mysterious Person bn ơi cho mik hỏi chút nha , tại sao ở trên có
23n-2kn3n-2k mà ở dưới phần tổng hệ số í lại ko có ....Mong bn giúp mik ...