K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

Cái thể loại gì đấy mũ 2001 rồi lại tiếp mũ 2004 

16 tháng 10 2016

Đây là mũ tầng hs giỏi à?

19 tháng 8

3 không chia hết cho 2 nên 

\(3^{5^7}\) không chia hết cho 2 

Vậy A = 19992k+1

      A = (19992)k.1999

    A = \(\overline{...1}\)k.1999

    A = \(\overline{..9}\)

19 tháng 8

Vì 6 ⋮ 2 nên \(6^{8^9}\) ⋮ 2

Vậy B = 20242k = (20242)k = \(\overline{..6}\)k = \(\overline{..6}\)

16 tháng 2 2022

program 06;
Uses crt;
Var
  T:real
  i;n:integer;
Begin
clrscr;
 write('n=1');Readln(n);
 T:=06
 for i:=1 to n do
  T:=\frac{1}{1}.2+\frac{1}{2}.5+\frac{1}{3}.8+\frac{1}{4}.11
 write('T=06'; T);
 readln;
 end.

NV
6 tháng 4 2022

Đặt \(a=p^q+7q^p\)

Nếu p; q đều bằng 2 \(\Rightarrow a=2^2+7.2^2\) là hợp số (ktm)

Nếu p; q cùng lớn hơn 2 \(\Rightarrow p^q\) và \(q^p\) đều lẻ

\(\Rightarrow a=p^q+7q^p\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)

\(\Rightarrow\) Có đúng 1 số trong p; q phải bằng 2, số còn lại là SNT lẻ

TH1: \(p=2\Rightarrow a=2^q+7.q^2\)

- Nếu \(q=3\Rightarrow a=2^3+7.3^2=71\) là SNT (thỏa mãn)

- Nếu \(q>3\Rightarrow q^2\equiv1\left(mod3\right)\Rightarrow7q^2\equiv1\left(mod3\right)\)

\(2^q=2^{2k+1}=2.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow a=2^q+7.q^2\equiv2+1\left(mod3\right)\Rightarrow a⋮3\) là hợp số (ktm)

TH2: \(q=2\Rightarrow a=p^2+7.2^p\)

- Nếu \(p=3\Rightarrow a=3^2+7.2^3=65\) ko phải SNT (ktm)

- Nếu \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(7.2^p=7.2^{2k+1}=14.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow p^2+7.2^p⋮3\) là hợp số (ktm)

Vậy \(\left(p;q\right)=\left(2;3\right)\) là cặp SNT duy nhất thỏa mãn yêu cầu

6 tháng 4 2022

Đây là bài toán rất khó về đồng dư thức, em cám ơn thầy Lâm đã giải rất cẩn thận ạ!

27 tháng 8 2023

Bạn thank you ai vậy

5 tháng 4 2022

Với p = 2 => 8p2  +1 = 33 (loại)

Với p = 3 => 8p2 + 1 = 73 (tm)

Với p > 3 => Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\)

Với p = 3k + 1 => 8p2 + 1 = 8(3k + 1)2 + 1 

= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)(loại)

Với p = 3k + 2 => 8p2 + 1 = 8(3k + 2)2 + 1 

= 72k2 + 96k + 33 = 3(24k2 + 32k + 11) \(⋮3\)(loại)

Vậy p = 3 thì 8p2 + 1 \(\in P\)

NV
5 tháng 4 2022

- Với \(p=2\) ko thỏa mãn

- Với \(p=3\Rightarrow8p^2+1=73\) là số nguyên tố (thỏa mãn)

- Với \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(\Rightarrow p^2=3k+1\)

\(\Rightarrow8p^2+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)\) là số lớn hơn 3 và chia hết cho 3

\(\Rightarrow8p^2+1\) là hợp số (ktm)

Vậy \(p=3\) là SNT duy nhất thỏa mãn yêu cầu