Giải pt: \(x+\frac{x}{\sqrt{x^2-1}}=\frac{35}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Xét riêng 2 căn lớn đầu tiên
Bình phương, thu gọn được căn(12-8 căn 2)
Giờ kết hợp kết quả này với căn lớn còn lại
Tiếp tục bình phương, thu gọn là xong
ĐKXĐ: ...
- Với \(x\le-1\Rightarrow VT< 0< \frac{35}{12}\) pt vô nghiệm
- Với \(x>1\) hai vế ko âm, bình phương:
\(\Leftrightarrow x^2+\frac{x^2}{x^2-1}+\frac{2x^2}{\sqrt{x^2-1}}=\frac{1225}{144}\)
\(\Leftrightarrow\frac{x^4}{x^2-1}+\frac{2x^2}{\sqrt{x^2-1}}-\frac{1225}{144}=0\)
Đặt \(\frac{x^2}{\sqrt{x^2-1}}=t>0\)
\(\Rightarrow t^2+2t-\frac{1225}{144}=0\Rightarrow\left[{}\begin{matrix}t=\frac{25}{12}\\t=-\frac{49}{12}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\frac{x^2}{\sqrt{x^2-1}}=\frac{25}{12}\Leftrightarrow...\)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
Đặt cái BT thứ nhất là √a thì cái BT sau là √(1/a),khi đó phương trình viết lại(a>0)
√a+√(1/a)=7/4;Bình phương 2 vế suy ra:
a+1/a+2=49/16>>>a+1/a=17/16>>>a^2+1=17/16a>>>16A^2+16-17=0(pt vô nghiệm)
Vậy phương trình vô nghiệm
woa !! sin, cos , tui dốt nhất cái này