Tìm x thuộc Z :
3x+5 chia hết cho x-2
2-4x chia hết cho x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 2x + 5 chia hết cho x + 1
2x + 2 + 3 chia hết cho x + 1
( 2x + 2 ) + 3 chia hết cho x + 1
2x + 2 chia hết cho x + 1 với mọi x . Vậy 3 chia hết cho x + 1
=> x + 1 thuộc Ư( 3)
=> x + 1 thuộc { 1 ; 3 }
Với x + 1 = 1
x = 1 - 1
x = 0
Với x + 1 = 3
x = 3 - 1
x = 2
Vậy x thuộc { 0 ; 2 }
b ) 3x + 15 chia hết cho x + 2
3x + 6 + 9 chia hết cho x + 2
( 3x + 6 ) + 9 chia hết cho x + 2
3x + 6 chia hết cho x + 2 với mọi x . Vậy 9 chia hết cho x + 2
=> x + 2 thuộc Ư( 9 )
=> x + 2 thuộc { 1 ; 3 ; 9 }
Với x + 2 = 1
x = 1 - 2 ( loại )
Với x + 2 = 3
x = 3 - 2
x = 1
Với x + 2 = 9
x = 9 - 2
x = 7
Vậy x thuộc { 1 ; 7 }
c ) 4x + 22 chia hết cho 2x - 1
4x - 2 + 24 chia hết cho 2x - 1
4x - 2 chia hết cho 2x - 1 với mọi x . Vậy 24 chia hết cho 2x - 1
=> 2x - 1 thuộc Ư(24)
=> 2x - 1 thuộc { 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 )
Với 2x - 1 = 1
2x = 1 + 1
2x = 2
x = 2 : 2
x = 1
....
Với 2x - 1 = 24
2x = 24 + 1
2x = 25
x = 25 : 2 ( loại )
Vậy x thuộc { 1 ; 2 }
Tham khảo:Tìm x,y thuộc z sao cho 3x+1:hết cho y và 3y+1 :hết cho x?
Bạn phải hiểu một điều đơn giản: với người khác thì vấn đề của họ có ưu tiên số 1. Bạn cần gấp không có nghĩa là họ phải vứt việc của họ để chạy tới giúp. Vì mình có phải cái rốn của vũ trụ đâu. Đấy là chưa kể có người bó tay, có người không muốn giúp.
Mà bạn đóng 1 chủ đề đi. 1 vấn đề thì mở 2 chủ đề để làm gì?
------
Có thể bạn sẽ nói: tôi không cần nữa, nhưng tôi gửi lên vì có thể ai đó cũng quan tâm.
Tôi dùng phương pháp "cần cù"
---------------
1. Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3)
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13.
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên)
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4
=> nghiệm (x, y) = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13)
2. Ta tìm 2 nghiệm x, y < 0. Đặt x1 = -x > 0, y1 = -y > 0.
3x + 1 = -3x1 + 1 = - (3x1 - 1) chia hết cho y = -y1, tức (3x1 - 1) chia hết cho y1. Tương tự (3y1 - 1) chia hết cho x1. Ta tìm x ≤ y, tức y1 ≤ x1, các nghiệm còn lại có được bằng cách hoán vị x và y.
3x1 - 1 ≥ 3y1 - 1 = kx1, với k là số tự nhiên => k = 1, 2
Với k = 1=> x1 = 3y1 - 1, 3x1 - 1 = 9y1 - 4 chia hết cho y1 <=> 4 chia hết cho y1 <=> y1 = 1 và x1 = 2, hoặc y1 = 2 và x1 = 5, hoặc y1 = 4 và x1 = 11
Với k = 2 => 3y1 - 1 = 2x1, 3x1 - 1 = (9y1 - 5) / 2 = my1 (với m tự nhiên)
=> (9 - 2m)y1 = 5 => y1 là ước của 5 <=> y1 = 1 và x1 = (3y1 - 1) / 2 = 1, hoặc y1 = 5 và x1 = 7
=> nghiệm (x, y) = (-11, -4), (-7, -5), (-5, -2), (-2, -1), (-1, -1) và (-1, -2), (-2, -5), (-4, -11), (-5, -7)
3. Ta tìm nghiệm y < 0 < x, nghiệm x < 0 < y có được bằng cách hoán vị x và y.
Ta đặt y1 = - y > 0.
3x + 1 chia hết cho y = -y1, tức chia hết cho y1. 3y + 1 = -(3y1 - 1) chia hết cho x, tức (3y1 - 1) chia hết cho x.
3a. y1 ≤ x
3x + 1 ≥ 3y1 + 1 > 3y1 - 1 = kx => k = 1, 2 (3y1 - 1 không chia hết cho 3)
Với k = 1 => x = 3y1 - 1 => 3x + 1 = 9y1 - 2 chia hết cho y1 <=> 2 chia hết cho y1 <=> y1 = 1 và x = 3y1 - 1 = 2 hoặc y1 = 2 và x = 5
Với k = 2 => 3y1 - 1 = 2x => 3x + 1 = (9y1 - 1) / 2 = my1(m tự nhiên)
(9 - 2m)y1 = 1 => y1 = 1 => x = (3y1 - 1) / 2 = 1
=> nghiệm (x, y) = (1, -1), (2, -1), (5, -2)
3b. x < y1
ky1 = 3x + 1 < 3y1 + 1 => k = 1, 2 (3x + 1) không chia hết cho 3)
Với k = 1 => y1 = 3x + 1 => 3y1 - 1 = 9x + 2 chia hết cho x <=> 2 chia hết cho x <=> x = 1 và y1 = 3x + 1 = 4, hoặc x = 2 và y1 = 7
Với k = 2 => 2y1 = 3x + 1 => 3y1 - 1 = (9x + 1) / 2 = mx (m tự nhiên)
=> (2m - 9)x = 1 => x = 1 => y1 = (3x + 1) / 2 = 2
=> nghiệm (x, y) = (1, -2), (1, -4), (2, -7)
Vậy nghiệm x, y khác dấu là: (x, y) = (1, -1), (2, -1), (5, -2), (1, -2), (1, -4), (2, -7) và (hoán vị) (-1, 1), (-1, 2), (-2, 5), (-2, 1), (-4, 1), (-7, 2)
-------------
Kết luận: tất cả các nghiệm:
(x, y) = (-11, -4), (-7, -5), (-7, 2), (-5, -7), (-5, -2), (-4, -11), (-4, 1), (-2, -5), (-2, -1), (-2, 1), (-2, 5), (-1, -2), (-1, -1), (-1, 1), (-1, 2), (1, -4), (1, -2), (1, -1), (1, 1), (1, 2), (1, 4), (2, -7), (2, -1), (2, 1), (2, 7), (4, 1), (4, 13), (5, -2), (5, 8), (7, 2), (8, 5), (13, 4)
-----------
Tất nhiên là tôi chưa kiểm tra lại
bạn ấy cho đề tham khảo sai r
+) 4x+11 chia hết cho x+2
=> 4x+8+3 chia hết cho x+2
=> 4(x+2)+3 chia hết cho x+2
=> 4(x+2) chia hết cho x+2 ; 3 chia hết cho x+2
=> x+2 thuộc Ư(3)={-1,-3,1,3}
=>x={-3,-5,-1,1}
+) 3x-5 chia hết cho x-1
=> 3x-3-2 chia hết cho x-1
=> 3(x-1)-2 chia hết cho x-1
=> 3(x-1) chia hết cho x-1 ; 2 chia hết cho x-1
=> x-1 thuộc Ư(2)={-1,-2,1,2}
=> x={0,-1,2,3}
a,\(\dfrac{3x+5}{x-2}=3+\dfrac{11}{x-2}\)
\((3x+5)\vdots (x-2)\) \(\Rightarrow\)\(\dfrac{3x+5}{x-2}\)nguyên \(\Rightarrow \dfrac{11}{x-2}\)nguyên
\(\Rightarrow 11\vdots(x-2)\Rightarrow (x-2)\in Ư(11)=\{\pm1;\pm11\}\)
\(\Rightarrow x\in\{-9;1;3;13\}\)
b,\(\dfrac{2-4x}{x-1}=-4-\dfrac{2}{x-1}\)
\((2-4x)\vdots(x-1)\Rightarrow \dfrac{2-4x}{x-1}\)nguyên\(\Rightarrow \dfrac{2}{x-1}\)nguyên
\(\Rightarrow 2\vdots(x-1)\Rightarrow (x-1)\inƯ(2)=\{\pm1;\pm2\}\\\Rightarrow x\in\{-1;0;2;3\}\)
c,\(\dfrac{x^{2}-x+2}{x-1}=\dfrac{x(x-1)+2}{x-1}=x+\dfrac{2}{x-1}\)
\((x^{2}-x+2)\vdots(x-1)\)\(\Rightarrow \dfrac{x^{2}-x+2}{x-1}\)nguyên \(x+\dfrac{2}{x-1}\)nguyên\(\Rightarrow \dfrac{2}{x-1}\)nguyên
\(\Rightarrow 2\vdots(x-1)\Rightarrow (x-1)\inƯ(2)=\{\pm1;\pm2\}\\\Rightarrow x\in\{-1;0;2;3\}\)
d,\(\dfrac{x^{2}+2x+4}{x+1}=\dfrac{(x+1)^{2}+3}{x+1}=x+1+\dfrac{3}{x+1}\)
\((x^{2}+2x+4)\vdots(x+1)\Rightarrow \dfrac{x^{2}+2x+4}{x+1}\in Z\Rightarrow \dfrac{3}{x+1}\in Z\\\Rightarrow3\vdots(x+1)\Rightarrow (x+1)\in Ư(3)=\{\pm1;\pm3\}\\\Rightarrow x\in\{-4;-2;0;2\}\)
a)<=>(x+1)+2 chia hết x+1
=>2 chia hết x+1
=>x+1\(\in\){1,-1,2,-2}
=>x\(\in\){0,-2,1,-3}
b)<=>3(x-2)+7 chia hết x-2
=>7 chia hết x-2
=>x-2\(\in\){1,-1,7,-7}
=>x\(\in\){3,1,9,-5}
c,d,e tương tự
A=x3+4x2-3x+5=x3+x2+3x2+3x-6x-6+11=x2(x+1)+3x.(x+1)-6(x+1)+11=(x+1)(x2+3x-6)+11
Do (x+1)(x2+3x-6) luôn chia hết cho (x+1)=> A chia hết cho (x+1) khi 11 chia hết cho (x+1). Có các TH:
+/ x+1=1 => x=0
+/ x+1=11 => x=10
ĐS: x={0, 10}
\(a,2x+1⋮x-2\)
\(=>2.\left(x-2\right)+5⋮x-2\)
Do \(2.\left(x-2\right)⋮x-2\)
\(=>5⋮x-2\)
\(=>x-2\inƯ\left(5\right)\)
Nên ta có bảng sau :
x-2 | 1 | 5 | -1 | -5 |
x | 3 | 7 | 1 | -3 |
Vậy ...
\(b,3x+5⋮x\)
Do \(3x⋮x=>5⋮x\)
\(=>x\inƯ\left(5\right)\)
Nên ta có bảng sau :
x | 1 | 5 | -1 | -5 |
Vậy ...
\(c,4x+1⋮2x+3\)
\(=>2.\left(2x+3\right)-5⋮2x+3\)
Do \(2.\left(2x+3\right)⋮2x+3\)
\(=>5⋮2x+3\)
\(=>2x+3\inƯ\left(5\right)\)
Nên ta có bảng sau :
2x+3 | 1 | 5 | -1 | -5 |
2x | -2 | 2 | -4 | -8 |
x | -1 | 1 | -2 | -4 |
Vậy ...
a) Ta có: 2x+1=2(x-2)+5
Để 2x+1 chia hết cho x-2 thì 2(x-2)+5 chia hết cho x-2
Vì 2(x-2) chia hết cho x-2
=> 5 chia hết cho x-2
Vì x thuộc Z => z-2 thuộc Ư (5)={-5;-1;1;5}
Nếu x-2=-5 => x=-3
Nếu x-2=-1 => x=1
Nếu x-2=1 => x=3
Nếu x-1=5 => x=6
b) Ta có 3x chia hết cho x với mọi x
=> Để 3x+5 chia hết cho x thì 5 chia hết cho x
Vì x thuộc Z => x thuộc Ư (5)={-5;-1;1;5}
c) Ta có: 4x+11=2(2x+3)+5
Để 4x+11 chia hết cho 2x+3 thì 2(2x+3)+5 chia hết cho 2x+3
Vì 2(2x+3) chia hết cho 2x+3 => 5 chia hết cho 2x+3
Vì x thuộc Z => 2x+3 thuộc Ư (5)={-5;-1;1;5}
Nếu 2x+3=-5 => 2x=-8 => x=-4
Nếu 2x+3=-1 => 2x=-4 => x=-2
Nếu 2x+3=1 => 2x=-2 => x=-1
Nếu 2x+3=5 => 2x=2 => x=1
3x +5 = 3( x -2 ) + 11 chia hết cho x -2 khi 11 chia hết cho x -2
=> x -2 thuộc U( 11)
+ x -2 = -11 => x =-9
+x -2 = -1 => x = 1
+ x-2 = 1 => x = 3
+ x -2 = 11 => x =13
Vậy x thuộc { -9 ; 1 ; 3; 13}
3x + 5 = 3 ( x - 2 ) + 11 chia hết cho x - 2 khi chia hết cho x - 2
=> x- 2 = -11 => x = 9
+ x -2 = -1 => x = 1
+ x - 2 = 1 = > x = 3
+ x - 2 = 11 => x = 13