Tính:
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^6}\)
Giúp mình với nhé, cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
\(\frac{1}{2}:\frac{3}{4}+\frac{1}{6}:\frac{3}{4}\)
\(=\frac{1}{2}.\frac{4}{3}+\frac{1}{6}.\frac{4}{3}\)
\(=\frac{4}{3}.\left(\frac{1}{2}+\frac{1}{6}\right)\)
\(=\frac{4}{3}.\frac{2}{3}\)
\(=\frac{8}{9}\)
Bạn ơi cho mình hỏi là tại sao lại có \(\frac{4}{3}\)ạ
A=\(\frac{1}{3}-\frac{3}{4}-\left(\frac{-3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
=\(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
=\(\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{2}{9}+\frac{1}{36}\right)+\frac{1}{72}\)
=\(\left(\frac{14}{15}+\frac{1}{15}\right)-\left(\frac{35}{36}+\frac{1}{36}\right)+\frac{1}{72}\)
=1 - 1 + \(\frac{1}{72}\)= 0 + \(\frac{1}{72}\)= \(\frac{1}{72}\)
bài 1)
70:2=35(m)
Gọi a và b lần lượt là chiều rộng và chiều dài của miếng đất
Từ b/a = 4 /3 = > 3/a = 4 /b
= > 3/ a = 4/ b = 3 + 4/ a + b = 7/ 35 = 5 /3 a = 5
= > a = 3.5 = 15/ 4 b = 5
= > b = 5.4 = 20
Vậy diện tích miếng đất đó là:
15.20=300(m2)
2) Bài 138 (Sách bài tập - tập 1 - trang 33)
bài 2 cậu vào cái ý là có
a) Trục căn thức ở mỗi số hạng của biểu thức A,ta có:
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)=\(\frac{\sqrt{2}+\sqrt{1}}{1-2}-\frac{\sqrt{3}+\sqrt{2}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}-...+\frac{\sqrt{2007}+\sqrt{2008}}{2007-2008}\)
= \(-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2007}+\sqrt{2008}\right)\)
=\(-1-\sqrt{2008}\)
b)Ta xét số hạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào biểu thức B ta được:
B= \(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}\)= \(\frac{10}{11}\)
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
\(=\frac{-1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{1}{\sqrt{4}-\sqrt{3}}+\frac{1}{\sqrt{5}-\sqrt{4}}-....+\frac{1}{\sqrt{2007}-\sqrt{2006}}-\frac{1}{\sqrt{2008}-\sqrt{2007}}\)
\(=\frac{-1\cdot\left(\sqrt{2}+\sqrt{1}\right)}{2-1}+\frac{1\cdot\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\frac{1\cdot\left(\sqrt{4}+\sqrt{3}\right)}{4-3}+\frac{1\cdot\left(\sqrt{5}+\sqrt{4}\right)}{5-4}-...+\frac{1\cdot\left(\sqrt{2007}+\sqrt{2006}\right)}{2007-2006}-\frac{1 \left(\sqrt{2008}+\sqrt{2007}\right)}{2008-2007}\)
\(=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2006}+\sqrt{2007}-\sqrt{2007}-\sqrt{2008}\)
\(=-1-\sqrt{2008}\)
\(A=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+....+99-100}\)
\(=\frac{\frac{100\left(100+1\right)}{2}\left(\frac{3+2-6}{12}\right)\left[63\left(1,2-1,2\right)+1\right]}{\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)}\)
\(=\frac{5050.\left(-\frac{1}{12}\right).1}{-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)}\)
\(=\frac{2525.\left(-\frac{1}{6}\right)}{-50}=\frac{101}{12}\)
\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+..+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{1.2}-\frac{1}{38.39}=\frac{1}{1}-\frac{1}{2}-\frac{1}{38}+\frac{1}{39}=\frac{370}{741}\)
A = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\)
3A = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
2A = 3A - A = \(1-\frac{1}{3^6}\)
=> A = \(\frac{1-\frac{1}{3^6}}{2}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
\(\Rightarrow3A-A=1-\frac{1}{3^6}=\frac{3^6}{3^6}-\frac{1}{3^6}=\frac{728}{729}\)
\(\Rightarrow2A=\frac{728}{729}\)
\(\Rightarrow A=\frac{\frac{728}{729}}{2}=\frac{364}{729}\)