Cho đường tròn (O; R). Từ 1 điểm A nằm ngoài đường tròn, kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đường thẳng BO cắt đường thẳng AC tại D.
a) Chứng minh rằng BC vuông góc với OA
b) Chứng minh rằng DC.DA=DO.DB
c) Đường thẳng vuông góc với BD tại O, cắt AD tại M. Chứng minh rằng \(\frac{AB}{AM}-\frac{AM}{DM}=1\)
a) BC vuông góc với AO là theo tính chất hai tiếp tuyến đi qua 1 điểm A
b) Xét hai tam giác DCO và DBA có góc D chung và góc C = góc B = 90 độ (tính chất tiếp tuyến)
=> tam giác DCO đồng dạng với tam giác DBA
=> DC/DB = DO/DA
=> DC.DA = DO.DB (đpcm)
c) Vì OM vuông góc với DB => OM // BA (cùng vuông góc với DB)
Ta có AM/DM + 1 = (AM + DM)/DM = DA/DM
Theo Viet ta có: DA/DM = AB/MO
=> AM/DM + 1 = AB/OM
=> AB/OM - AM/DM = 1 (*)
Ta lại có tam giác MOA cân (vì góc MOA = góc BAO do so le trong, góc MAO = góc BAO do tính chất hai tiếp tuyến cùng 1 điểm)
=> OM = AM
(*) trở thành: AB/AM - AM/DM = 1 (đpcm)