ba cạnh của một tam giác vuông có độ dài là 3 số tự nhiên liên tiếp . Tìm 3 số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Giải :
Số ở giữa là :
804 : 3 = 268
Số lớn nhất là :
268 + 1 = 269
ĐS : 269
2. Giải
Cạnh thứ hai là :
25 + 5 = 30 (cm)
Diện tích tam giác là :
(25 x 30) : 2 = 275 (cm2)
ĐS : 275cm2
Tích đúng cho tớ nha !
1. 804:3+1=269(trong 1 dãy số cách đều, số trung bình luôn là số ở giữa)
2. 25x(25+5)=750(cm2)
Trên cạnh BC lấy điểm D sao cho CD=CA.Ta có
Theo đề bài ta có
Dễ dàng chứng minh tam giác ABC đồng dạng tam giác DBA
Đặ BC=a ; AB=c ;Ac=b
;
Do các cạnh của tam giác ABC là ba STN liên tiếp nên a>b nên a-b=1 hoặc a-b=2
Sau đó giải hai trường hợp đó ra nghiệm thích hợp AB=2 , AC= 3 ; BC=4
b) Dễ rồi : kẽ đường cao AH xong rồi tính nhé
**** hộ mình
Cách của mình:
Cho tam giác ABC có AB=n-1 AC=n và BC=n+1
Điều kiện: n>2
và \(\widehat{A}>\widehat{B}>\widehat{C}\)
TH1: \(\widehat{A}=2\widehat{C}\)
tam giác ABC có: \(\frac{n+1}{sinA}=\frac{n-1}{sinC}\)
\(\Leftrightarrow\frac{n+1}{sin2C}=\frac{n-1}{sinC}\)
\(\Leftrightarrow\frac{n+1}{2\cdot cosC\cdot sinC}=\frac{n-1}{sinC}\)
\(\Leftrightarrow\frac{n+1}{2\cdot cosC}=n-1\)
\(\Rightarrow2\cdot cosC=\frac{n+1}{n-1}\)(1)
Đồng thời theo hệ thức Cosin:
\(n^2+\left(n+1\right)^2-2n\left(n+1\right)\cdot cosC=\left(n-1\right)^2\)
\(\Leftrightarrow2\cdot cosC=n^2+4n=\frac{n\left(n+4\right)}{n\left(n+1\right)}=\frac{n+4}{n+1}\)(2)
Từ (1) và (2):
Suy ra: n=5(thỏa)
Suy ra tam giác có cạnh là 4;5;6
Xét tiếp TH2: \(\widehat{A}=2\widehat{B}\)
TH3: \(\widehat{B}=2\widehat{C}\)
Cần 1 cách hay khác! Cảm ơn!
Gọi 3 cạnh tam giác vuông là (n-1), n và (n+1), ta có:
(n-1)2 + n2 = (n+1)2
n2 -2n + 1 + n2 = n2 + 2n + 1
n2 - 4n =0
n(n-4) = 0
n = 0 (loại) hoặc n=4
Vậy 3 cạnh là: 3, 4, 5