Bài 1: Chứng minh rằng với mọi n thuộc N*, ta có:
1.2+2.5+3.8+…..n(3n-1) = n^2(n+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/2.5+1/5.8+...+1/(3n-1)(3n+2)
3A=3/2.5+3/5.8+....+3/(3n-1)(3n+2)
3A=1/2-1/5+1/5-1/8+....+1/3n-1-1/3n+2
3A=1/2-1/3n+2
3A=3n/6n+4
A=(3n/6n+4) /3
A=n/6n+4(đpcm)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}\)
\(=\frac{n}{2\left(3n+2\right)}\)
hoc cm quy nap chua Kq=n^2(n+1)
day la cach cm
1.2 + 2.5 +...+ n(3n-1) = n^2(n+1) ̣́(*)
n = 1=> 2 = 2 đúng.
giả sử (*) đúng với n = k, ta có:
1.2 + 2.5 +...+ k(3k-1) = k^2(k+1) (1)
ta cm (*) đúng với n = k + 1, thật vậy:
(1) => 1.2 + 2.5 +...+ k(3k-1)+ (k + 1)[3(k + 1) - 1] = k^2(k+1) + (k + 1)[3(k + 1) - 1]
<=> 1.2 + 2.5 +...+ k(3k-1)+ (k + 1)[3(k + 1) - 1] = (k + 1)[k^2 + 3k +2)
<=> 1.2 + 2.5 +...+ k(3k-1)+ (k + 1)[3(k + 1) - 1] = (k + 1)(k^2 + k + 2k +2 )
<=> 1.2 + 2.5 +...+ k(3k-1)+ (k + 1)[3(k + 1) - 1] = (k + 1)[k(k + 1) +2(k +1)]
<=> 1.2 + 2.5 +...+ k(3k-1)+ (k + 1)[3(k + 1) - 1] = (k + 1)^2(k + 2)
vậy (*) đúng với n = k +1 , theo nguyên lý qui nạp (*) đúng với mọi n
Ta có : a.(3a-1)=3a^2-a Cho a lần lượt bằng 1;2;3;4;....;n ta được : 1.2=3.1^2-1 2.5=3.2^2-2 ................ n.(3n-1)=3n^2-n Cộng vế theo vế các đẳng thức ta được: 1.2+2.5+3.8+......+n.(3n-1)=3.(1^2+2^2+....+n^2)-(1+2+3+.....+n) =3.[n.(n+1).(n+2)/6]-n.(n+1)/2 = n^2.(n+1)
Đặt A=1/2.5+1/5.8+...+1/(3n-1).(3n+2)
=>3A=3/2.5+3/5.8+...+3/(3n-1).(3n+2)
=>3A=1/2-1/5+1/5-1/8+...+1/3n-1-1/3n+2
=>3A=1/2-1/3n+2
=>3A=(3n+2-2)/[2.(3n+2)]
=>3A=3n/6n+4
=>A=3n/6n+4/3
=>A=n/6n+4
Đặt \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+......+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=>3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+....+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\)
=> \(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{3n-1}-\frac{1}{3n+2}\)
=>\(3A=\frac{1}{2}-\frac{1}{3n+2}\)
=> \(3A=\frac{\left(3n+2\right):2}{3n+2}-\frac{1}{3n+2}\)
=> \(3A=\frac{1,5.n}{3n+2}\)
=>\(A=\frac{1,5.n}{3n+2}.\frac{1}{3}=>A=\frac{1,5.n}{\left(3n+2\right).3}=\frac{1,5.n}{9n+6}\)
\(Hay\) \(A=\frac{1,5n:1,5}{\left(9n+6\right):1,5}=\frac{n}{9n:1,5+6:1,5}=\frac{n}{6n + 4} \left(đpcm\right)\)
\(1\cdot2+2\cdot5+3\cdot8+...+n\left(3n-1\right)=n^2\left(n+1\right)\left(1\right)\)
Khi n=1 thì ta có: \(1\cdot2=1^2\left(1+1\right)\)(đúng)
Khi n>1 thì k=n+1
Giả sử như (1) đúng với k=n, ta cần chứng minh nó cũng đúng với k=n+1, tức là ta sẽ cần chứng minh:
\(1\cdot2+2\cdot5+3\cdot8+...+n\left(3n-1\right)+\left(n+1\right)\left(3n+3-1\right)=\left(n+1\right)^2\left(n+1+1\right)\)
\(\Leftrightarrow n^2\left(n+1\right)+\left(n+1\right)\left(3n+2\right)=\left(n+1\right)^2\left(n+2\right)\)
=>\(n^3+n^2+3n^2+2n+3n+2=\left(n^2+2n+1\right)\left(n+2\right)\)
=>\(n^3+4n^2+5n+2=n^3+2n^2+2n^2+4n+n+2\)
=>\(0n=0\)(đúng)
Vậy: (1) luôn đúng với mọi \(n\in Z^+\)