Giải hệ
\(\sqrt{x^2-x-y-1}\).\(\sqrt[3]{x-y-1}\)=y+1
x+y+1+\(\sqrt{2x+y}\)=\(\sqrt{5x^2+3y^2+3x+7y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\left\{{}\begin{matrix}x\sqrt{2}-3y=1\\2x+y\sqrt{2}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-3\sqrt{2}\cdot y=\sqrt{2}\\2x+y\sqrt{2}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4\sqrt{2}\cdot y=\sqrt{2}+2\\2x+y\sqrt{2}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{2+\sqrt{2}}{-4\sqrt{2}}=\dfrac{-\sqrt{2}-1}{4}\\2x=-2-y\sqrt{2}=-2+\sqrt{2}\cdot\dfrac{\sqrt{2}+1}{4}=\dfrac{-6+\sqrt{2}}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{-\sqrt{2}-1}{4}\\x=\dfrac{-6+\sqrt{2}}{8}\end{matrix}\right.\)
2: \(\left\{{}\begin{matrix}5x\sqrt{3}+y=2\sqrt{2}\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x\sqrt{6}+y\sqrt{2}=4\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x\cdot\sqrt{6}=6\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{6}\\y\sqrt{2}=x\sqrt{6}-2=1-2=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{6}}{6}\\y=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(ĐK:x\ge0;y\ge2;5x-y\ge0\\ PT\left(1\right)\Leftrightarrow\sqrt{y+3x}-\sqrt{5x-y}+\sqrt{2x+7y}-3\sqrt{x}=0\\ \Leftrightarrow\dfrac{2y-2x}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7y-7x}{\sqrt{2x+7y}+3\sqrt{x}}=0\\ \Leftrightarrow\left(y-x\right)\left(\dfrac{2}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7}{\sqrt{2x+7y}+3\sqrt{x}}\right)=0\\ \Leftrightarrow x=y\left(\dfrac{2}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7}{\sqrt{2x+7y}+3\sqrt{x}}>0\right)\)
Thay vào \(PT\left(2\right)\Leftrightarrow x-4+\sqrt{x-2}=\sqrt{x^3-10x^2+33x-34}-\sqrt{x^3-9x^2+24x-16}\)
\(\Leftrightarrow\dfrac{x^2-9x+18}{x-4+\sqrt{x-2}}=\dfrac{-x^2+9x-18}{\sqrt{x^3-10x^2+33x-34}+\sqrt{x^3-9x^2+24x-16}}\\ \Leftrightarrow\left(x^2-9x+18\right)\left(\dfrac{1}{x-4+\sqrt{x-2}}+\dfrac{1}{\sqrt{x^3-10x^2+33x-34}+\sqrt{x^3-9x^2+24x-16}}\right)=0\\ \Leftrightarrow x^2-9x+18=0\left(\text{ngoặc lớn luôn }>0,\forall x\ge2\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=6\end{matrix}\right.\)
Vậy ...
Xét phương trình (1) ta có
\(2x^2-y^2+xy-5x+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)
\(\Leftrightarrow\left(x+y\right)\left(2x-y\right)-\left(x+y\right)-2\left(2x-y\right)+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)
\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\sqrt{y-2x+1}-\sqrt{3-3x}\)
Đặt \(\hept{\begin{cases}\sqrt{y-2x+1}=a\left(a\ge0\right)\\\sqrt{3-3x}=b\left(b\ge0\right)\end{cases}\Rightarrow a^2-b^2=x+y-2}\)thì ta có
\(PT\Leftrightarrow-a^2\left(a^2-b^2\right)=a-b\)
\(\Leftrightarrow\left(b-a\right)\left(a^3+a^2b+1\right)=0\)
Ta thấy là \(\left(a^3+a^2b+1\right)>0\)
\(\Rightarrow a=b\)
\(\Leftrightarrow y-2x+1=3-3x\)
\(\Leftrightarrow y=2-x\)
Thế vào pt (2) ta được
\(x^2-2+x-1=\sqrt{4x+2-x+5}-\sqrt{x+4-2x-2}\)
\(\Leftrightarrow x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)
Giải tiếp sẽ có được nghiệm \(\hept{\begin{cases}x=-2\\y=4\end{cases}}\)
phương trình (1) tách như sau:
(x+y)(2x−y)−(x+y)−2(2x−y)+2=√y−2x+1−√3−3x⇔(x+y−2)(2x−y−1)=√y−2x+1−√3−3x↔{√y−2x+1=a(a≥0)√3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x(x+y)(2x−y)−(x+y)−2(2x−y)+2=y−2x+1−3−3x⇔(x+y−2)(2x−y−1)=y−2x+1−3−3x↔{y−2x+1=a(a≥0)3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x
thế vaò (2) là ok
k cho mình nhé xin các bạn đó cho mình 1 cái có hại gì đến các bạn đâu
\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)
\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)
\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)
\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)
Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)
Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)
Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)
Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)
Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~