Một vật dao động điều hoà với phương trình \(x= A\cos(4\pi f t+ \varphi)\) thì động năng và thế năng của nó biến thiên tuần hoàn với tần số
A.f’ = 4f.
B.f’ = f.
C.f’ = f/2.
D.f’ = 2f.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lực kéo về: \(F = -kx= -k.A.\cos \omega t\)
Động năng và thế năng biến thiên điều hòa theo thời gian với tần số f thì li độ của vật biến thiên với tần số \(\frac{f}{2}\)
Do F kéo về tỉ lệ với li độ x của vật nên cũng biến thiên điều hòa với tần số \(\frac{f}{2}\).
Chọn đáp án.B.
Trong dao động điều hoà, động năng và thế năng biến đổi tuần hoàn với tần số gấp đôi tần số dao động.
Chọn B.
Đáp án A
Động năng biến thiên với tần số gấp đôi tần số của li độ. Nên nếu động năng biến thiên với tần số f thì li độ biến thiên với tần số 0,5f Mặt khác ta có, lực kéo Fk = -kx biến thiên cùng tần số với li độ x => Fk biến thiên với tần số 0,5f
Ok cần thì tui làm cho
Trước tiên cậu cần phải biết biểu thức của thế năng
\(W_t=\dfrac{1}{2}kx^2\)
Thay phương trình x đã cho vô:
\(W_t=\dfrac{1}{2}k.A^2.\cos^2\left(2\pi t+\dfrac{2\pi}{3}\right)\)
\(\cos^2\left(2\pi t+\dfrac{2\pi}{3}\right)=\dfrac{\cos4\left(\pi t+\dfrac{2\pi}{3}\right)+1}{2}\)
\(\Rightarrow W_t=\dfrac{1}{4}kA^2.\left[\cos4\left(\pi t+\dfrac{2\pi}{3}\right)+1\right]\)
Nhìn vào biểu thức ta kết luận được thế năng trong dao động của con lắc lò xo biến thiên tuần hoàn với chu kỳ là \(T=\dfrac{2\pi}{4\pi}=\dfrac{1}{2}\left(s\right)\)
Tương tự với động năng, ta sử dụng công thức không thời gian:
\(A^2=x^2+\dfrac{v^2}{\omega^2}\Rightarrow v^2=\omega^2\left(A^2-x^2\right)\)
\(\omega^2=\dfrac{k}{m}\Rightarrow m=\dfrac{k}{\omega^2}\)
\(\Rightarrow W_d=\dfrac{1}{2}mv^2=\dfrac{1}{2}.\dfrac{k}{\omega^2}.\omega^2\left(A^2-x^2\right)=\dfrac{1}{2}kA^2\left(1-\cos^2\left(2\pi t+\dfrac{2\pi}{3}\right)\right)\)
\(=\dfrac{1}{2}kA^2\left(1-\dfrac{\cos4\left(\pi t+\dfrac{2\pi}{3}\right)+1}{2}\right)=\dfrac{1}{4}kA^2\left[1-\cos4\left(\pi t+\dfrac{2\pi}{3}\right)\right]\)
Vậy động năng biến thiên tuần hoàn với chu kỳ là: \(T=\dfrac{2\pi}{4\pi}=\dfrac{1}{2}\left(s\right)\)
Nếu như ko sử dụng công thức ko thời gian, cậu có thể đạo hàm phương trình x ra, sẽ ra phương trình vận tốc và biến đổi là xong
\(v=x'=-\omega A\sin\left(\omega t+\varphi\right)=-2\pi.A\sin\left(2\pi t+\dfrac{2\pi}{3}\right)\)
Dạo này chả muốn làm Lý gì nên lười ghé box Lý lắm :( Cậu còn cần ko?
Đáp án D
+ Vật dao động điều hòa với tần số f thì động năng biến đổi với tần số 2f
Động năng và thế năng biến thiên với tân số \(f' = 2f\) bạn nhé.
Giải thích như sau:
\(W_{dongnang} = \frac{1}{2} mv^2 = \frac{1}{2}m.A^2 \omega^2 sin^2 (\omega t+\varphi)= \frac{A^2 \omega^2m}{2} \frac{1-\cos(2\omega t + 2 \varphi)}{2}= A_{dongnang}.\cos (2 \omega t - \varphi')+const.\) Dựa và phân tích trên thấy rằng động năng có tấn số góc mới là \(2 \omega\) tương ứng với tấn số \(f' = 2f\). Thế năng cũng tương tự.
Chọn đáp án.D