một nhóm thanh niên có 9 nam và 3 nữ. tính xs để khi chọn 4 người có đúng 1 nữ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu: \(C_{17}^5\)
a. Số cách chọn sao cho có đúng 3 nam (nghĩa là chọn 3 nam từ 9 nam và 2 nữ từ 8 nữ):
\(n_A=C_9^3.C_8^2\)
Xác suất: \(P_A=\dfrac{C_9^3.C_8^2}{C_{17}^5}=...\)
b. Chọn nhiều nhất 1 nữ nghĩa là ta có 2 TH có thể xảy ra: có 1 nữ và 4 nam hoặc cả 5 đều nam
Số cách chọn: \(n_B=C_8^1.C_4^9+C_9^5\)
Xác suất: \(P_B=\dfrac{C_8^1.C_9^4+C_9^5}{C_{17}^5}=...\)
a. \(C^1_7=7\left(cách\right)\)
b. \(C^1_3=3\left(cách\right)\)
c. Số cách không ra bạn nữ là chỉ chọn nam, vậy số cách chọn ít nhất 1 nữ là: \(7-3=4\left(cách\right)\)
Đáp án D
Số cách chia tổ thành 3 nhóm đi làm 3 công việc khác nhau là C 12 4 . C 8 4 . C 4 4 = 34650
Với công việc thứ nhất có C 9 3 C 3 1 cách chọn 3 nam, 1 nữ.
Với công việc thứ nhất có C 6 3 C 2 1 cách chọn 3 nam, 1 nữ.
Với công việc thứ nhất có C 3 3 C 1 1 cách chọn 3 nam, 1 nữ.
Vậy xác suất cần tính là P = C 9 3 C 3 1 . C 6 3 C 2 1 . C 3 3 C 1 1 C 12 4 C 8 4 C 4 4 = 16 55
T a có \(\Omega\)" chọn 4 người"
\(\left|\Omega\right|=C^4_{12}\)
Gọi A" CHọn 4 người có đúng 1 người nữ'
suy ra có 3 người nam và 1 người nữ
\(\left|A\right|=C^1_3.C^3_9\)
XS để chọn đc 4 người nam và có 1 người nữ là:
\(P\left(A\right)=\frac{\left|A\right|}{\left|\Omega\right|}=\frac{C^1_3.C_9^3}{C^4_{12}}\)
Mình tính ra kq khác huhu. Sai chỗ nào v ạ