Cho em hỏi các bước để tìm cực trị của hàm số với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Ta có: y ' = x 2 + 2 mc + 2 m - 1 . Để hàm số có cực trị thì phương trình y'= 0 có hai nghiệm phân biệt
⇔ Δ ' > 0 ⇔ m 2 - 2 m + 1 > 0 ⇔ ( m - 1 ) 2 > 0 ⇔ m ≠ 1 .
Phương trình hoành độ giao điểm:
\(x^2=x+m\Leftrightarrow x^2-x-m=0\) (1)
(P) tiếp xúc (d) khi và chỉ khi (1) có nghiệm kép
\(\Leftrightarrow\Delta=1+4m=0\Rightarrow m=-\dfrac{1}{4}\)
Khi đó hoành độ giao điểm là: \(x=-\dfrac{-1}{2}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{4}\)
Tọa độ tiếp điểm: \(\left(\dfrac{1}{2};\dfrac{1}{4}\right)\)
Đáp án A
Phương pháp giải:
Tìm tọa độ điểm cực trị của đồ thị hàm số trùng phương và tính diện tích tam giác
Lời giải: TXĐ : D = R
Ta có R
Phương trình
Hàm số có 3 điểm cực trị ó (*) có 2 nghiệm phân biệt khác
Khi đó
Gọi ; là ba điểm cực trị. Tam giác ABC cân tại A.
Trung điểm H của BC là
Và
Diện tích tam giác ABC là
Mà R suy ra
Vậy Smax = 1 Dấu bằng xảy ra khi và chỉ khi m = 0
Chọn C
[Phương pháp tự luận]
Hàm số có cực đại , cực tiểu khi và chỉ khi m < 1
Tọa độ điểm cực trị A ( 0 ; m + 1 )
Phương trình đường thẳng BC: y + m 4 - 2 m 2 - m = 0
Vậy S đạt giá trị lớn nhất ⇔ m = 0
[Phương pháp trắc nghiệm]
Vậy S đạt giá trị lớn nhất ⇔ m = 0
để hàm số f có cực trị tại a thì f'(\(x_0\))=0
để tìm cực trị của hàm số thì có 2 quy tắc
1, quy tắc 1
f liên tục trên (a,b) chữa điểm a và có đạo hàm trên các khoảng (a;\(x_0\)) và (\(x_0\),b). Khi đó
a, nếu f'(x)<0 với mọi \(x\in\) (a;\(x_0\)) và f'(\(x_0\))>0 với mọi \(x\in\left(x_0;b\right)\) thì hàm số f đạt cực tiểu tại điểm \(x_0\)
b, nếu f'(x)>0 với mọi \(x\in\) (a;\(x_0\)) và f'(\(x_0\))<0 với mọi \(x\in\left(x_0;b\right)\) thì hàm số f đạt cực đại tại điểm \(x_0\)
quy tắc 1
bước 1. tìm f'(x)
bước 2:tìm các điểm \(x_i\) tại đó đạo hàm của nó =0 hoặc hàm số liên tục nhưng ko có đạo hàm
bước 3: xét dấu f'(x). nếu f'(x) đổi dấu khi qua điểm xi thì hàm số đặt cực trị tại xi
Gỉa sử f có đạo hàm cấp 1 trên khoảng (a,b) chứa điểm x0 , f'(x0)=0 f có đạo hàm cấp hai khác 0 tại điểm x0
a, nếu f''(x0)<0 thì hàm số đạt cực đại tại x0
b, nếu f''(x0)>0 thì hàm số đạt cực tiểu tại x0
quy tắc 2:
bước 1: tìm f'(x)
tìm các nghiệm của phương trình f'(xi)=0
bước 3: tìm f''(x) và tính f''(xi)
nếu f''(xi)<0 thì hàm số đạt cực đại tại xi
nếu f''(xi)>0 thì hàm số đạt cực đại tại xi