1 gam chất phóng xạ trong 1 giây phát ra 4,2.1013 hạt beta trừ. Khối lượng nguyên tử của chất phóng xạ này là 58,933u, 1u=1,66.10^-27 kg. Chu kỳ bán rã của chất phóng xạ này là?
A. 1,97.10^8 s
B. 1,68.10^8 s
C.1,86.10^8 s
D. 1,78.10^8 s
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Ta có:
Theo giả thiết ta có:
T = 1602(năm), m 0 = 1 g r a m , m t = 0.5 g r a m
Áp dụng công thức ta có khoảng thời gian cần tìm là:
t = T . log 1 2 m t m 0 = 1602. log 1 2 0.5 1 = 1602. log 1 2 1 2 = 1602
Vậy sau 1602 năm thì 1gram chất phóng xạ này bị phân ra còn lại 0.5 gram
Chọn đáp án B
Số hạt chưa phân rã tức là số hạt nhân còn lại
N = N 0 .2 − t T = N 0 .2 − 3 T T = N 0 8
\(X \rightarrow _{-1}^{\ \ 0}e+Y\)
Từ phương trình phóng xạ => Cứ 1 hạt nhân \(X\) bị phóng xạ thì tạo thành 1 hạt nhân \(\beta^-\)
Số hạt nhân \(X\) bị phóng xạ là \(\Delta N = 4,2.10^{13}\) hạt. (1)
Số hạt nhân ban đầu \(X\) (trong 1 gam) là: \(N_0 = \frac{m_0}{A}.N_A= \frac{1}{58,933}.6,023.10^{23} \approx 1,022.10^{22}\)hạt. (2)
Từ (1) và (2) => \(\Delta N = N_0(1-2^{-\frac{t}{T}})\)
=> \(2 ^{-t/T}=1- \frac{\Delta N}{N_0} \)
=> \(\frac{-t}{T} = \ln_2(1- \frac{4,2.10^{13}}{1,022.10^{22}}) =- 5,93.10^{-9}\)
=> \(T \approx 1,68.10^{8}s.\) (\(t = 1s\))
Chọn đáp án.B.1,68.108s.