Cho tam giác ABC vuông tại A, có AH là đường cao. Gọi AM AN , lần lượt là đường phân giác trong của góc BAH và CAH. Chứng minh rằng:
a,MN=AB+AC-BC
b,MN^2=2.MB.MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
Chứng minh \(IJ^2=IM^2+JN^2\)
Ta xét tam giác MIA và HIA có:
IA chung
MA=HA (gt)
\(\widehat{MAI}=\widehat{HAI}\)( AI là phân giác góc BAH)
=> Tam giác MIA=HIA
=> MI=IH, \(\widehat{AMI}=\widehat{AHI}\)
Tương tự ta chứng minh đc tam giác AJH= AJN
=> \(JH=JN,\widehat{AHJ}=\widehat{ANJ}\)
Mà \(\widehat{AMI}+\widehat{ANJ}=90^o\)( tam giác AMN vuông)
=> \(\widehat{AHI}+\widehat{AHJ}=90^o\)
=> Tam giác IHJ vuông tại H
Áp dụng định lí Pitago ta có:
\(IJ^2=IH^2+JH^2=IM^2+JN^2\)
=> dpcm
a: Xét (O) có
ΔBNC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBNC vuông tại N
Xét (O) có
ΔBMC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét ΔABC có
BN là đường cao
CM là đường cao
BN cắt CM tại H
Do đó: AH\(\perp\)BC
1: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc ACB chung
Do đó: ΔABC\(\sim\)ΔHAC
2: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
=>BM/3=CM/4
Áp dụng tính chất của dãy tr số bằng nhau, ta được:
\(\dfrac{BM}{3}=\dfrac{CM}{4}=\dfrac{BM+CM}{3+4}=\dfrac{25}{7}\)
Do đó: BM=75/7(cm); CM=100/7(cm)
a, Có ∠BAH= ∠BCA (vì cùng phụ với ∠HAC)
=> ∠BAH+ ∠HAD= ∠BCA + ∠DAC (vì AD là tia phân giác ∠HAC)
=> ∠BAD= ∠BCA + ∠DAC
Xét ΔADC có ∠ADB là góc ngoài tại D => ∠ADB= ∠BCA + ∠DAC
=> ∠BAD= ∠ADB
=> ΔABD cân tại B
b, Xét ΔABD cân tại B => AB= BD
Xét ΔABC vuông tại A
=> AB²= BH. BC
= (BD- HD). BC
= (AB- 6). 25
= 25 AB- 150
=> AB²- 25AB+ 150= 0
<=> (AB-15)(AB-10)= 0
<=> AB= 15 hoặc AB= 10
Vậy AB= 15cm, hoặc AB= 10 cm