cho x,y thỏa \(8x^2+y^2+\frac{1}{4x^2}=4\) xác định x và y để tích x.y đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-2+\frac{1}{4x^2}+\left(2x\right)^2+y^2=4\)
\(\left(\left(2x\right)^2-\frac{1}{\left(2x\right)^2}\right)^2+\left(\left(2x\right)-y\right)^2=4-2\left(2x\right)y\)
\(VT\ge0\) đẳng thức khi: 2x=+-1; 2x=y;
\(\Rightarrow4-4xy\ge0\Rightarrow xy\le1\)
DS: x=+-1/2; y+-1
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Ta có: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
\(\Leftrightarrow\left(x^2+2+\frac{1}{x^2}\right)+\left(x^2-xy+\frac{y^2}{4}\right)+xy=2\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)
\(\Rightarrow2-xy\ge0\)
\(\Rightarrow xy\le2\)
vì x+y=4 nền (x+y)^2=4^2 =x^2+ 2xy+y^2=16 ma xy=5 nên 2xy=10 ta có x^2+y^2+10=16 ; x^2+y^2= 16-10 x^2+y^2=6 kết quả mik là z đó nhưng k biết có đúng k bn ak
\(8x^2+y^2+\frac{1}{4x^2}=4\) => \(x^2.\left(8x^2+y^2+\frac{1}{4x^2}\right)=4x^2\)
<=> \(8x^4+\left(xy\right)^2+\frac{1}{4}=4x^2\Leftrightarrow\left(xy\right)^2=-8x^4+4x^2-\frac{1}{4}\)
<=> \(\left(xy\right)^2=-8\left(x^4-2.x^2.\frac{1}{4}+\frac{1}{16}\right)+\frac{1}{2}-\frac{1}{4}=-8\left(x^2-\frac{1}{4}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
<=> \(-\frac{1}{2}\le xy\le\frac{1}{2}\)
Dấu "=" xảy ra khi x2 = 1/4 <=> x = 1/2 hoặc x = -1/2
Vậy xy nhỏ nhất bằng -1/2 tại x = -1/2; y = 1 hoặc x = 1/2 ; y = -1
nhìn giống toán 8 phết hi ^_^