chứng minh rằng với mọi x ϵ R
-x^2-3x-4<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(-x^2-4x-5\)
\(=-\left(x^2+4x+5\right)\)
\(=-\left(x^2+4x+4\right)-1\)
\(=-\left(x+2\right)^2-1< 0\forall x\)
Ta có: \(-x^2+10x-27\)
\(=-\left(x^2-10x+27\right)\)
\(=-\left(x^2-10x+25+2\right)\)
\(=-\left(x-5\right)^2-2< 0\forall x\)
a: f(x1)+f(x2)=a*x1+a*x2=a(x1+x2)
f(x1+x2)=a*(x1+x2)
=>f(x1)+f(x2)=f(x1+x2)
b: f(kx)=a*kx=ak*x
k*f(x)=k*ax=x*ka
=>f(kx)=k*f(x)
c: f(x1)*f(x2)=f(x1*x2)
=>ax1*ax2=a*(x1*x2)
=>a^2-a=0
=>a=1
\(3x^2-4x+50\)
\(=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+\frac{146}{3}\)
\(=3\left(x-\frac{2}{3}\right)^2+\frac{146}{3}\ge\frac{146}{3}>0\) (đpcm)
Đặt A=x^4-x^3+3x^2-2x+2
=(x^4+3x^2+2)-(x^3+2x)
=(x^4+x^2+2x^2+2)-x(x^2+2)
=(x^2+1)(x^2+2)-x(x^2+2)
=(x^2+2)(x^2-x+1)
Ta có x^2+2>=2>0;
x^2-x+1=(x^2-x+1/4)+3/4 =(x-1/2)^2+3/4>=3/4>0
=> A>0
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
Ta có: \(-x^2-3x-4\)
\(=-\left(x^2+3x+4\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\right)\)
\(=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{7}{4}< 0\forall x\)