K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2021

Đặt A = \(\sqrt{5-\sqrt{21}}-\sqrt{6-\sqrt{32}}\)

\(\sqrt{2}A=\sqrt{10-2\sqrt{7.3}}-\sqrt{2}\sqrt{6-2\sqrt{4.2}}\)

\(=\sqrt{7}-\sqrt{3}-\sqrt{2}\left(\sqrt{4}-\sqrt{2}\right)\)

\(=\sqrt{7}-\sqrt{3}-2\sqrt{2}+2\)

Vậy \(A=\frac{\sqrt{7}-\sqrt{3}-2\sqrt{2}+2}{\sqrt{2}}=\frac{\sqrt{14}-\sqrt{6}-8+2\sqrt{2}}{2}\)

NM
25 tháng 7 2021

\(A=\sqrt{5-\sqrt{21}}-\sqrt{6-4\sqrt{2}}\)

nên \(A=\sqrt{\frac{7}{2}-2\sqrt{\frac{7}{2}.\frac{3}{2}}+\frac{3}{2}}-\sqrt{4-4\sqrt{2}+2}=\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(A=\frac{\sqrt{14}-\sqrt{6}}{2}-2+\sqrt{2}\)

17 tháng 7 2023

1) \(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{2^2+2\cdot2\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=\left|2+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)

\(=2+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}-1\)

2) \(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}\)

\(=\sqrt{20-4\sqrt{5}+1}+\sqrt{20+4\sqrt{5}+1}\)

\(=\sqrt{\left(2\sqrt{5}\right)^2-2\sqrt{5}\cdot2\cdot1+1^2}+\sqrt{\left(2\sqrt{5}\right)^2+2\sqrt{5}\cdot2\cdot1-1^2}\)

\(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(=\left|2\sqrt{5}-1\right|+\left|2\sqrt{5}+1\right|\)

\(=2\sqrt{5}-1+2\sqrt{5}+1\)

\(=4\sqrt{5}\)

a: \(=\left(\sqrt{3}-2\right)\cdot\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\)

=3-4=-1

b: \(=\sqrt{6+4\sqrt{2}}-\sqrt{11-2\sqrt{18}}\)

\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=2+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}-1\)

c: \(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(=2\sqrt{5}-1+2\sqrt{5}+1\)

\(=4\sqrt{5}\)

22 tháng 11 2021

\(\sqrt{5+\sqrt{21}}-\sqrt{5-\sqrt{21}}\\ =\dfrac{\left(\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\right)}{\sqrt{2}}\\ =\dfrac{\left(\sqrt{7+2\sqrt{7}.\sqrt{3}+3}-\sqrt{7-2\sqrt{7}.\sqrt{3}+3}\right)}{\sqrt{2}}\\ =\dfrac{\sqrt{7}+\sqrt{3}-\sqrt{7}+\sqrt{3}}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

 

NV
22 tháng 11 2021

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{7}+\sqrt{3}\right|-\left|\sqrt{7}-\sqrt{3}\right|\right)\)

\(=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

5 tháng 9 2023

a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)

\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)

\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)

\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)

\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)

\(=7-\sqrt{21}+\sqrt{21}-3\)

\(=4\)

b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

NV
10 tháng 1 2022

\(A=\sqrt{\left(9\sqrt{2}+2\sqrt{3}\right)^2}-\sqrt{\left(9\sqrt{2}-\sqrt{3}\right)^2}\)

\(=\left|9\sqrt{2}+2\sqrt{3}\right|-\left|9\sqrt{2}-\sqrt{3}\right|\)

\(=9\sqrt{2}+2\sqrt{3}-9\sqrt{2}+\sqrt{3}=3\sqrt{3}\)

Kiểm tra lại đề bài câu B, chỗ \(\sqrt{2+\sqrt{2+2}}\)

10 tháng 1 2022

Câu B đúng đề bài ạ ! 

4 tháng 12 2020

Làm luôn nhé

\(2B=21.2\left[\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)\right]^2-2.15\sqrt{15}\)

\(2B=21\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-6\left(\sqrt{3}-1+\sqrt{5}-1\right)^2-30\sqrt{15}\)

\(2B=21\left(\sqrt{3}+\sqrt{5}\right)^2-6\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)

\(2B=15\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)

\(2B=15\left(8+2\sqrt{15}\right)-30\sqrt{15}\)

\(2B=120+30\sqrt{15}-30\sqrt{5}\)

\(2B=120\)

\(B=60\)

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Vì đây toàn là số cụ thể rồi nên không có đkxđ bạn nhé.

Lời giải:
a.

$=\sqrt{2}+4\sqrt{2}+6\sqrt{2}-3\sqrt{2}=8\sqrt{2}$
b.

$=\frac{13(5-2\sqrt{3})}{(5+2\sqrt{3})(5-2\sqrt{3})}+2\sqrt{3}=\frac{13(5-2\sqrt{3})}{13}+2\sqrt{3}$

$=5-2\sqrt{3}+2\sqrt{3}=5$

c.

$=2\sqrt{5}-|2-\sqrt{5}|=2\sqrt{5}-(\sqrt{5}-2)=\sqrt{5}+2$

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)

NV
30 tháng 1 2022

Đặt \(x=\sqrt{\dfrac{5+2\sqrt{6}}{5-\sqrt{6}}}+\sqrt{\dfrac{5-2\sqrt{6}}{5+\sqrt{6}}}>0\)

\(x^2=\dfrac{5+2\sqrt{6}}{5-\sqrt{6}}+\dfrac{5-2\sqrt{6}}{5+\sqrt{6}}+2\sqrt{\dfrac{25-24}{25-6}}=\dfrac{74}{19}+\dfrac{2\sqrt{19}}{19}\)

\(\Rightarrow x^2=\dfrac{74+2\sqrt{19}}{19}\Rightarrow x=\sqrt{\dfrac{74+2\sqrt{19}}{19}}\)

Ko thể rút gọn thêm nữa (có thể trục căn thức ở mẫu)