K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(NM=\dfrac{BC}{2}=3.5\left(cm\right)\)

26 tháng 2 2017

12 tháng 11 2021

a, \(BC=BH+CH=10\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=6\left(cm\right)\\AC=\sqrt{CH\cdot BC}=8\left(cm\right)\end{matrix}\right.\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}\approx90^0-53^0=37^0\)

b, Vì \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\) nên AMHN là hcn

Do đó \(MN=AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\)

Áp dụng HTL: \(AM\cdot MB=HM^2;AN\cdot NC=HN^2\)

Áp dụng PTG: \(HM^2+HN^2=MN^2=AH^2\)

Vậy \(AM\cdot MB+AN\cdot NC=AH^2\) 

4 tháng 5 2019

Chọn C

Ta gọi E, F lần lượt là trung điểm của SC, AB

 

Ta có ME//NF(do cùng song song với BC. Nên tứ giác MENF là hình thang, và 

hay tứ giác MENF là hình thang vuông tại M, F

Ta có:  hay E là hình chiếu vuông góc của N lên (SAC)

 

Từ đó ta có được, góc giữa MN và (SAC) là góc giữa MN và CI

Suy ra, gọi  α là góc giữa MN và (SAC) thì 

15 tháng 1 2019

Mặt trụ tạo bởi hình vuông ABCD khi quay quanh MN có đường cao h = a và bán kính đáy 

Diện tích 1 đáy và diện tích xung quanh của hình trụ là:

Nên có diện tích toàn phần của hình trụ:

Mặt cầu (S) có bán kính R có diện tích bằng Stp của mặt trụ nên: