Cho tam giác ABC có M là trung điểm của AB; Qua M kẻ đường thẳng song song với BC cắt AC tại N.Chứng minh N là trung điểm của cạnh AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó: ΔBNC=ΔCMB
b: Ta có: ΔBNC=ΔCMB
nên \(\widehat{NCB}=\widehat{MBC}\)
hay \(\widehat{KBC}=\widehat{KCB}\)
Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)
nên ΔKBC cân tại K
hay KB=KC
a: Xét tứ giác ABNC có
M là trung điểm của AN
M là trung điểm của BC
Do đó:ABNC là hình bình hành
Suy ra: AB=NC
Xet ΔABD và ΔCBA có
AB/CB=BD/BA
góc B chung
=>ΔABD đồng dạng vơi ΔCBA
1: Xet ΔBCA có
E,D lần lượt là trung điểm của AB,AC
nên ED là đừog trung bình
=>ED//BC và ED=BC/2
Xét ΔGBC có
N,M lần lượt là trung điểm của GB,GC
nên NM là đường trung bình
=>NM//BC và NM=BC/2
=>ED//MN và ED=MN
=>EDMN là hình bình hành
MN+DE=BC/2+BC/2=BC<AB+AC
2 Để MNED là hình chữ nhật thì ED vuông góc EN
=>AG vuông góc BC
=>ΔABC cân tại A
=>AB=AC
3: NK=5NB
=>BK=6BN
=>BK=2BD
->D là trung điểm của BK
Xét tứ giác ABCK có
D là trung điểm chung của AC và BK
=>ABCK là hình bình hành
=>AK//BC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét tứ giác AKBC có
N là trung điểm của AB
N là trung điểm của CK
Do đó: AKBC là hình bình hành
Suy ra: AK=BC
hay AK=2MC
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
=>AM⊥BC
mà BC//AK
nên AM⊥AK
hay
a: Sửa đề: ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC
MB=MC
AM chung
Do đó: ΔABM=ΔACM
b: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>AM là phân giác của \(\widehat{BAC}\)
c: AB=AC
MB=MC
Do đó: AM là đường trung trực của BC
=>AM\(\perp\)BC
Bài 1:
Xét tứ giác ABCD:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^{o}\) (Tổng các góc trong tứ giác).
Mà \(\widehat{A}= \) \(57^o;\) \(\widehat{C}=\) \(110^o;\) \(\widehat{D}=\) \(75^o\left(gt\right).\)
\(\Rightarrow\) \(\widehat{B}=\) \(118^o.\)
Từ C vẽ đường thẳng song song AB cắt MN tại E
Xét tam giác BMC và tam giác ECM ta có
MC là cạnh chung
góc BMC = góc MCE ( 2 góc so le trong và AB//CE)
góc BCM = góc CME ( 2 góc so le trong và MN //BC)
=> tam giác BMC = tam giác ECM ( g-c-g)
=> BM= CE
mà AM = BM ( M là trung điểm AB )
nên CE = AM
Xét tam giác ANM và tam giác CNE ta có
AM = CE ( cmt)
góc MAN = góc NCE ( 2 góc so le trong và AB//CE)
góc AMN = góc NEC ( 2 góc so le trong và AB//CE)
=> tam giac ANM = tam giác CNE (g-c-g)
=> AN= NC
=> N là trung điểm AC