K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2021

Tại sao lại có bé hơn 0 ạ

6 tháng 9 2016

Vì x2(thì thuộc tất cả mọi x thì x2 vẫn là số dương)

      Nên x>-1

            Còn x<1 thì mk ko hểu 

6 tháng 9 2016

vì x2 có 2 th

29 tháng 6 2015

cái này dùng bảng xét dấu là nhanh nhất. mình làm mẫu cho một cái, bạn xem rồi tự tìm hiểu nha. nếu vẫn k hiểu thì liên hệ mình giải nốt cho. bảng xét dấu này lấy nghiệm của từng nhân tử rồi theo quy tắc phải cùng, trái khác để xét dấu

D= (x-2)(x+2).(4-x)(4+x)

a) C<0

nhìn bảng xét dấu ta có thể thấy rằng tích này âm trong 2 trường hợp: \(1\le x\le2\)và x>3

tương tự làm với câu 2 nha

29 tháng 6 2015

a) C < 0 <=>

hoặc x - 1 < 0 => x < 1

hoặc x - 2 < 0 => x < 2

hoặc x - 3 < 0 => x < 3

Vậy x < 3 thỏa mãn đề bài.

20 tháng 3 2017

BĐT AM-GM để xem à

\(A=\dfrac{\left(x+16\right)\left(x+9\right)}{x}=\dfrac{x^2+25x+144}{x}=x+25+\dfrac{144}{x}\)

Áp dụng BĐT AM-GM cho 2 số không âm

\(x+\dfrac{144}{x}\ge2\sqrt{\dfrac{x.144}{x}}\)

\(x+\dfrac{144}{x}\ge24\)

\(x+\dfrac{144}{x}+25\ge49\)

\(A\ge49\)

\(Min_A=49\)

20 tháng 3 2017

\(A=\dfrac{x^2+25x+\left(3.4\right)^2}{x}=\dfrac{x^2+\left[49x-24x\right]+\left(3.4\right)^2}{x}=\dfrac{x^2-24x+\left(3.4\right)^2+49x}{x}\)\(A=\dfrac{\left(x-12\right)^2}{x}+49\ge49\)

7 tháng 1 2018

a, => x+5>0;x-4>0 hoặc x+5<0;x-4<0

=> x>4 hoặc x<-5

b, Vì x-3 < x+7 => x-3<0;x+7>0

=> x<3;x>-7 => -7<x<3

c, Vì x^2+1 >0 => x+3 > 0 => x>-3

d, Vì x^2-4 > x^2-16

=> x^2-4>0;x^2-16<0

=> x^2>4;x^2<16

=> 4<x^2<16

=> 2 < = x < = 4 hoặc -4 < = x < = -2

Tk mk nha

30 tháng 12 2015

x=1 ; y=2

30 tháng 12 2015

x=1;y=2

hoặc

x=-1;y=-2

17 tháng 3 2017

ai đó giúp giùm tôi đi mà!

7 tháng 7 2018

a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)

Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow\left(x-10\right)^2+1>1>0\)

Vậy x2-20x+101 >0 với mọi x

b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)

Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)

\(\Rightarrow\left(2a+1\right)^2+1>1>0\)

Vậy 4a2+4a+2 > 0 với mọi a

c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)

\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)

7 tháng 7 2018

Giúp mình với !!