K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

( x + y )2 + ( x - y )2

= ( x + y ) . ( x + y ) + ( x - y ) . ( x - y )

= ( x2 + xy ) + ( xy + y2 ) + ( x2 - xy ) - ( xy - y2 )

= x2 + xy + xy + y2 + x2 - xy - xy - y2

= ( x2 + x2 ) + ( xy + xy ) + ( y2 - y2 ) + ( -xy - xy )

= 2x2 + 2xy - 2xy

= 2x2

5 tháng 10 2021

1) \(A=\left(x+y\right)^2+4xy=x^2+2xy+y^2+4xy=x^2+6xy+y^2\)

2) \(B=\left(6x-2\right)^2+4\left(3x-1\right)\left(2+y\right)+\left(y+2\right)^2\)

\(=\left(6x-2\right)^2+2\left(6x-2\right)\left(y+2\right)+\left(y+2\right)^2\)

\(=\left(6x-2+y+2\right)^2=\left(6x+y\right)^2=36x^2+12xy+y^2\)

3) \(C=\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)

\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x-y+x+y\right)^2=\left(2x\right)^2=4x^2\)

5 tháng 10 2021

A. (Theo mình là -4xy thì mới rút gọn được)

B = (6x + y)^2

C = (2x)^2 = 4x^2

\(\left(x+2\right)^2+4\left(x+2\right)\left(x-2\right)+\left(x-4\right)^2\\ =x^2+4x+4+4x^2-16+x^2-8x+16\\ =6x^2-4x+4\)

30 tháng 8 2021

(x + 2)2 + 4(x + 2)(x - 2) + (x - 4)2

<=> x2 + 4x + 4 + 4(x2 - 4) + x2 - 8x + 16

<=> x2 + 4x + 4 + 4x2 - 16 + x2 - 8x + 16

<=> x2 + 4x2 + x2 + 4x - 8x + 4 - 16 + 16

<=> 6x2 - 4x + 4

15 tháng 12 2021

\(=x^2-4x+4+2x^2-2+x^2+4x+4=4x^2+6\)

15 tháng 12 2021

(x-2)2+2.(x-1).(x+1)+(x+2)2
= x2-4x+4+2x2-2.(x+1)+x2+4x+4
= 4x2+6

12 tháng 9 2021

\(a,M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\left(x>0;x\ne1\right)\\ M=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(b,M=-\dfrac{1}{2}\Leftrightarrow\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=-\dfrac{1}{2}\\ \Leftrightarrow-4x=x+\sqrt{x}-2\\ \Leftrightarrow5x+\sqrt{x}-2=0\)

Đặt \(\sqrt{x}=t\)

\(\Leftrightarrow5t^2+t-2=0\\ \Delta=1^2-4\cdot5\left(-2\right)=41\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{41}}{10}\\t=\dfrac{-1+\sqrt{41}}{10}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(1+\sqrt{41}\right)^2}{100}=\dfrac{-42-2\sqrt{41}}{100}\\x=\dfrac{\left(\sqrt{41}-1\right)^2}{100}=\dfrac{42-2\sqrt{41}}{100}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-21-\sqrt{41}}{50}\left(L\right)\\x=\dfrac{21-\sqrt{41}}{50}\left(N\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{21-\sqrt{41}}{50}\)

a: Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}+\dfrac{x-2}{x\sqrt{x}+x}\right)\)

\(=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2+x-2}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x}{\sqrt{x}-1}\cdot\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

15 tháng 12 2021

\(=x^2-1-x^2=-1\)

3 tháng 5 2020

\(A=\left(x-y\right)^2-2\left(x^2-xy-y^2\right)=x^2-2xy+y^2-2x^2+2xy+2y^2\)

\(=-x^2+3y^2\)

17 tháng 10 2018

\(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)\)

\(=3.\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-x^2+y^2\)

\(=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\)

\(=2y^2-10xy\)

a: \(M=\left(\dfrac{-3}{7}x^3y\right)\cdot\dfrac{7xy^3}{12}-x^2y^2\cdot\left(-\dfrac{3}{4}x^2y^2\right)\)

\(=\dfrac{-1}{4}x^4y^4+\dfrac{3}{4}x^4y^4\)

\(=\dfrac{1}{2}x^4y^4\)

b: Hệ số là 1/2

Biến là \(x^4;y^4\)

bậc là 4+4=8

c: Thay x=-1 và y=-2 vào M, ta được:

\(M=\dfrac{1}{2}\left(-1\right)^4\cdot\left(-2\right)^4=\dfrac{1}{2}\cdot16=8\)