Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.





Câu 1.
Tờ vé số có dạng \(\overline{a_1a_2a_3a_4a_5a_6}\in A=\left\{0;1;2;3;4;5;6;7;8;9\right\}\)
\(;a_i\ne a_j\)
Chọn \(a_1\ne0\) nên \(a_1\) có 9 cách chọn.
5 số còn lại là chỉnh hợp chập 5 của 8 số còn lại \(\in A\backslash\left\{a_1\right\}\)
\(\Rightarrow\)Có \(A_8^5\) cách.
Vậy có tất cả \(A_8^5\cdot9=60480\) vé số.


Chắc là biến đổi trong bài tìm pt mặt phẳng
Từ hệ 2 pt đầu ta rút ra được: \(\left\{{}\begin{matrix}c=-a-b\\d=2a+b\end{matrix}\right.\)
Thế vào pt cuối:
\(\dfrac{\left|3a-b\right|}{\sqrt{a^2+b^2+\left(a+b\right)^2}}=\dfrac{3}{\sqrt{2}}\)
\(\Rightarrow2\left(3a-b\right)^2=9\left(a^2+b^2\right)+9\left(a+b\right)^2\)
\(\Rightarrow15ab+8b^2=0\Rightarrow\left[{}\begin{matrix}b=0\\b=-\dfrac{15a}{8}\end{matrix}\right.\)


30B 31B 32D 33D 34C 35B 36B 37C 38B 39A 40D 41D 42A 43D 44D 45A 46C 47B 48C 49B 50C 51C 52A 53D 54B 55C 56A 57C 58A 59D 60B

\(A=\left(t+2\right)\left(3t-1\right)-t\left(3t+3\right)-2t+7\)
\(=3t^2-t+6t-2-3t^2-3t-2t+7\)
\(=\left(3t^2-3t^2\right)-\left(t-6t+3t+2t\right)-\left(2-7\right)\)
\(=0-0-\left(-5\right)=5\)
A=(t+2)(3t−1)−t(3t+3)−2t+7A=(t+2)(3t−1)−t(3t+3)−2t+7
=3t2−t+6t−2−3t2−3t−2t+7=3t2−t+6t−2−3t2−3t−2t+7
=(3t2−3t2)−(t−6t+3t+2t)−(2−7)=(3t2−3t2)−(t−6t+3t+2t)−(2−7)
=0−0−(−5)=5
whatttttt
I:
1 A
2 D
3 A
4 B
II:
5 B 17 A
6 B 18 A
7 C 19 A
8 D 20 A
9 D 21 B
10 C 22 C
11 A 23 B
12 A 24 D
13 D 25 D
14 C 26 C
15 D 27D
16 C 28(câu này mik bt đáp án nha!) : any
Chúc bn học tốt!