K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề bài: \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{2}y+4\right|=0\)

PT \(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-8\end{matrix}\right.\)

   Vậy \(\left(x;y\right)=\left(\dfrac{1}{6};-8\right)\)

Ta có: \(\left|3x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\left|\dfrac{1}{2}y+4\right|\ge0\forall y\)

Do đó: \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{2}y+4\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-8\end{matrix}\right.\)

11 tháng 7 2017

Giải hệ phương trình,(x + 2)(x - y + 1) = 2 và 3x^2 - 3xy + x + 2y = 4,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

AI XEM RỒI NHỚ CHẤM ĐIỂM

11 tháng 7 2017

Trình bày xấu chưa từng thấy

25 tháng 7 2019

\(Ta\)\(có\):     3X=2Y 7Y=6Z

\(\Leftrightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{6}=\frac{z}{7}\)

\(+\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{1}{6}.\frac{x}{2}=\frac{1}{6}.\frac{y}{3}\Rightarrow\frac{x}{12}=\frac{y}{18}\)(1)

\(+\frac{y}{6}=\frac{z}{7}\Rightarrow\frac{1}{3}.\frac{y}{6}=\frac{1}{3}.\frac{z}{7}\Rightarrow\frac{y}{18}=\frac{z}{21}\)(2)

Từ (1),(2)=>\(\frac{x}{12}=\frac{y}{18}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{12}=\frac{y}{18}=\frac{z}{21}=\frac{x+3y-2z}{12+3.18-2.21}=\frac{12}{12}=1\)

=>x=12.1=12

y=18.1=18

z=21.1=21

Vậy x=12;y=18;z=21

hộ mk cái

thank you

chúc các bạn mik hok tốt

25 tháng 12 2016

Mình sẽ trình bày rõ hơn ở (2) nha

Ta có:

\(\frac{2}{x+1}=\frac{3}{2y-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)

(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)

25 tháng 12 2016

Ahaha, mình cũng học rồi mà quên mất, cảm giác hiểu ra cái này khó diễn tả thật cậu ạ. Vui chả nói nên lời :))
À quên cảm ơn cậu nhé :^)

16 tháng 10 2014

a) =(x-y)*(x+y)-(5*(x+y))

=(x+y)*(x-y-5)

Mấy bài còn lại cũng tương tự nha bạn = cách đặt nhân tử chung 

bai nao khong hieu thi pan nhan tin vào nick minh minh se giai đùm ban

17 tháng 10 2014

a) (x2 - y2) - 5(x + y)

= (x - y)(x + y) - 5 (x + y)

= (x + y) (x - y -5)

b) 5x3 - 5x2y - 10x2 + 10 xy

= 5[(x3 - x2y) - (2x2 - 2 xy)]

=5[x2(x - y) - 2x(x - y)]

=5x(x-y)(x - 2)

c) 2x2 - 5x = x(2x - 5)

d) x3 - 3x2 +1 - 3x 

= (x3 + 1) - (3x2 + 3x)

= (x + 1)(x- x + 1) - 3x(x + 1)

= (x + 1) [x2 - x + 1 - 3x]

= (x + 1)[x2 - 4x + 1]

= (x + 1)[x2 - 2.x.2 + 22 - 22 + 1]

= (x + 1)[(x - 2)2 - 3]

\(\left(x+1\right)\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)\)

e) 3x2 - 6xy + 3y2 - 12z2

= 3[ x2 - 2xy + y2 - 4z2]

= 3[ (x - y)2 - (2z)2]

= 3(x - y + 2z)(x - y - 2z)

f) 3x2 - 7x - 10

= 3x2 - 7x - 7 - 3

= (3x2 -3) - (7x + 7)

= 3(x- 1) - 7(x + 1)

= 3 (x + 1)(x - 1) - 7(x + 1)

= (x + 1)[3(x - 1) - 7]

= (x +1)(3x - 8)

g) x4 + 1 - 2x2 = (x2)2 - 2.x2 + 1 = (x- 1)2

= (x + 1)2(x - 1)2

h) 3x2 - 3y2 - 12x + 12y

= 3(x- y2) - 12(x - y)

= 3(x - y)(x + y) - 12(x -y)

= (x - y) [3(x + y) - 12]

= (x - y). 3. (x+y - 4)

j) x2 - 3x + 2 = x2 - x - 2x +2

= x(x - 1) - 2(x -1)

=(x - 1)(x - 2)

7 tháng 8 2015

Hình như cần sửa thành \(\ge\)mới đúng

\(2x^2+xy+2y^2=\frac{1}{2}\left(x+y\right)^2+\frac{3}{2}\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+y\right)^2+\frac{3}{2}.\frac{1}{2}\left(x+y\right)^2=\frac{5}{4}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}\left(x+y\right)\)

\(\Rightarrow\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Vậy ta có đpcm.

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

11 tháng 10 2017

bài 1 câu hỏi là gì ?

12 tháng 10 2017

chời xíu