Chứng minh \(\forall\) n \(\in\) N, n > 1 ta có \(\dfrac{1}{n-1}-\dfrac{1}{n}>\dfrac{1}{n^2}>\dfrac{1}{n}-\dfrac{1}{n+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)
\(a,n=1\Leftrightarrow\dfrac{1}{1.2}=\dfrac{1}{2}\left(đúng\right)\\ G\text{/}s:n=k\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}=\dfrac{k}{k+1}\\ \text{Với }n=k+1\\ \text{Cần cm: }\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}\\ \text{Ta có }VT=\dfrac{k}{k+1}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k^2+2k+1}{\left(k+1\right)\left(k+2\right)}\\ =\dfrac{\left(k+1\right)^2}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}=VP\)
Vậy với \(n=k+1\) thì mệnh đề cũng đúng
Vậy theo pp quy nạp ta đc đpcm
Ta có: \(n\left(n-1\right)=n^2-n< n^2\Rightarrow\dfrac{1}{n\left(n-1\right)}>\dfrac{1}{n^2}\)
\(n\left(n+1\right)=n^2+n>n^2\Rightarrow\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}\)
Từ đó:
\(\dfrac{1}{n-1}-\dfrac{1}{n}=\dfrac{n-\left(n-1\right)}{n\left(n-1\right)}=\dfrac{1}{n\left(n-1\right)}>\dfrac{1}{n^2}\) (1)
\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}\) (2)
(1);(2) \(\Rightarrow\dfrac{1}{n-1}-\dfrac{1}{n}>\dfrac{1}{n^2}>\dfrac{1}{n}-\dfrac{1}{n+1}\) (đpcm)
Bạn xem lời giải tại đây:
Câu hỏi của Lệ Nguyễn Thị Mỹ - Toán lớp 9 | Học trực tuyến