K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
22 tháng 10 2023

Đề bị lỗi hiển thị hay sao ấy, mình không nhìn thấy BĐT/ đẳng thức bạn muốn chứng minh.

19 tháng 1 2019

chứng minh j bạn

20 tháng 1 2019

\(VT=\sum\dfrac{a^2}{5a^2+b^2+c^2+2bc}=\sum\dfrac{a^2}{\left(2a^2+bc\right)+\left(2a^2+bc\right)+a^2+b^2+c^2}\)

\(\le\sum\dfrac{a^2}{9}\left(\dfrac{2}{2a^2+bc}+\dfrac{1}{a^2+b^2+c^2}\right)=\dfrac{1}{9}+\sum\dfrac{2a^2}{9\left(2a^2+bc\right)}\)

\(=\dfrac{4}{9}-\dfrac{1}{9}\left(\dfrac{bc}{2a^2+bc}+\dfrac{ac}{2b^2+ac}+\dfrac{ab}{2c^2+ab}\right)\)

\(\le\dfrac{4}{9}-\dfrac{1}{9}.\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=\dfrac{1}{3}\)

Dấu = xảy ra khi a=b=c

5 tháng 8 2018

\(\dfrac{\left(b+c\right)^2}{5a^2+\left(b+c\right)^2}+\dfrac{\left(c+a\right)^2}{5b^2+\left(c+a\right)^2}+\dfrac{\left(a+b\right)^2}{5c^2+\left(a+b\right)}\ge\dfrac{4}{3}\)

\(\Leftrightarrow\dfrac{-20a^2+10bc+5b^2+c^2}{9\left(5a^2+\left(b+c\right)^2\right)}+\dfrac{-20b^2+10ac+5c^2+5a^2}{9\left(5b^2+\left(c+a\right)^2\right)}+\dfrac{-20c^2+10ab+5a^2+5b^2}{9\left(5c^2+\left(a+b\right)\right)}\ge0\)

\(\Leftrightarrow\sum_{cyc}\dfrac{\left(c-a\right)\left(10a+5b+5c\right)-\left(a-b\right)\left(10a+5b+5c\right)}{9\left(5a^2+\left(b+c\right)^2\right)}\ge0\)

\(\Leftrightarrow\sum_{cyc}\left(\dfrac{-\left(a-b\right)\left(10a+5b+5c\right)}{9\left(5a^2+\left(b+c\right)^2\right)}+\dfrac{\left(a-b\right)\left(10b+5a+5c\right)}{9\left(5b^2+\left(a+c\right)^2\right)}\right)\ge0\)

\(\Leftrightarrow\sum_{cyc}\left(\left(a-b\right)\left(\dfrac{10b+5a+5c}{9\left(5b^2+\left(a+c\right)^2\right)}-\dfrac{10a+5b+5c}{9\left(5a^2+\left(b+c\right)^2\right)}\right)\right)\ge0\)

\(\Leftrightarrow\sum_{cyc}\left(\left(a-b\right)^2\dfrac{5\left(a^2+b^2-c^2+4ab\right)}{3\left(a^2+2ac+5b^2+c^2\right)\left(5a^2+b^2+2bc+c^2\right)}\right)\ge0\)

Dau "=" khi \(a=b=c\)

5 tháng 8 2018

Nhung bo may thicc lam cach nay co duoc khong ?

1 tháng 3 2019

Ta chứng minh bổ đề sau:

\(\dfrac{5b^3-a^3}{ab+3b^2}\le2b-a\)

\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)

\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3b^2a\)

\(\Leftrightarrow a^3+b^3-a^2b-b^2a\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Bất đẳng thức cuối luôn đúng, vậy ta có

\(M\le2a-b+2b-c+2c-a=a+b+c\)Chứng minh hoàn tất. Đẳng thức xảy ra khi \(a=b=c\)

28 tháng 9 2017

Áp dụng bổ đề:

\(x^3+y^3\ge xy\left(x+y\right)\)

Ta có:

\(\dfrac{19b^3-a^3}{ab+5b^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\)

\(\le\dfrac{20b^3-ab\left(a+b\right)}{ab+5b^2}+\dfrac{20c^3-bc\left(b+c\right)}{bc+5c^2}+\dfrac{20a^3-ca\left(c+a\right)}{ac+5a^2}\)

\(=\dfrac{b\left(4b-a\right)\left(5b+a\right)}{ab+5b^2}+\dfrac{c\left(4c-b\right)\left(5c+b\right)}{bc+5c^2}+\dfrac{a\left(4a-c\right)\left(5a+c\right)}{ac+5a^2}\)

\(=4b-a+4c-b+4a-c=3\left(a+b+c\right)\)

28 tháng 9 2017

Pls tìm trước khi hỏi $$\dfrac{19b^3-a^3}{ab+5^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac ...

Cho a,b,c>0.Cm:(19b^3-a^3)/(ab+5b^2)+ - Trường Toán Pitago – Hướng dẫn ...

C/m bất đẳng thức khó cho hsg

C/m bất đẳng thức khó cho hsg | Diễn đàn HOCMAI - Cộng đồng học tập ...

Cho a,b,c >0 và a+b+c=1.CMR (19b^3-a^3)/(ba+5b^2)+(19c^3-b^3)/(cb ...

Câu hỏi của Anh đẹp traiii - Toán lớp 9 - Học toán với OnlineMath

Học tại nhà - Toán - Chứng minh đẳng thức

Bất đẳng thức - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ ...

Bất đẳng thức

Đề thi HSG 12 THPT An Lão, Hải Phòng - Diễn Đàn MathScope

giúp tớ bài toán Cm 9 này với! hu hu!? | Yahoo Hỏi & Đáp

VMF,HMF,k2pi, mathscope,... đủ cả

18 tháng 5 2023

Ta có \(a+b^2\le\dfrac{a^2+1}{2}+b^2=\dfrac{a^2+2b^2+1}{2}\)

\(\Rightarrow\dfrac{2a^2}{a+b^2}\ge\dfrac{4a^2}{a^2+2b^2+1}=\dfrac{4a^4}{a^4+2b^2a^2+a^2}\). Lập 2 BĐT tương tự rồi áp dụng bất đẳng thức BCS, ta có:

\(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge\dfrac{\left(2a^2+2b^2+2c^2\right)^2}{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\) \(=\dfrac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+3}\)\(=\dfrac{4.3^2}{3^2+3}=3\).

Mà \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\) nên ta có đpcm. ĐTXR \(\Leftrightarrow a=b=c=1\)