(0,5x-5)^2 + (y^2 - 0,25)^4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow 0,4+0,2x-0,5x=0,25-0,5x+0,25$
$\Leftrightarrow 0,4-0,3x=0,5-0,5x$
$\Leftrightarrow 0,2x=0,1\Rightarrow x=0,5$
\(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)
\(\Leftrightarrow\dfrac{2+x}{5}-\dfrac{x}{2}=\dfrac{1-2x}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{2+x}{5}-\dfrac{x}{2}=\dfrac{1-2x+1}{4}\)
\(\Leftrightarrow\dfrac{2+x}{5}-\dfrac{x}{2}=\dfrac{2-2x}{4}\)
\(\Leftrightarrow\dfrac{2+x}{5}=\dfrac{1-x}{2}+\dfrac{x}{2}\)
\(\Leftrightarrow\dfrac{2+x}{5}=\dfrac{1-x+x}{2}\)
\(\Leftrightarrow\dfrac{2+x}{5}=\dfrac{1}{2}\)
\(\Leftrightarrow2\left(2+x\right)=5\\ \Leftrightarrow2x+4-5=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\)
\(PT.\Rightarrow\) \(\dfrac{8+4x-10x-5+10x-5}{20}=0.\Rightarrow4x=2.\Leftrightarrow x=\dfrac{1}{2}.\)
1/
a/ \(x^2+\left(y-10\right)^2=0\)
vì: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\\left(y-10\right)^4\ge0\forall y\end{matrix}\right.\)
=> Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y-10=0\Rightarrow y=10\end{matrix}\right.\)
vậy......
b/ \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\le0\)
vì: \(\left\{{}\begin{matrix}\left(0,5x-5\right)^{20}\ge0\forall x\\\left(y^2-0,25\right)^2\ge0\forall y\end{matrix}\right.\)=> \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\ge0\)
=> Dấu ''='' xảy ra khi :
\(\left\{{}\begin{matrix}0,5x-5=0\\y^2-0,25=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{0,5}=10\\y^2=0,25\Rightarrow\left[{}\begin{matrix}y=0,5\\y=-0,5\end{matrix}\right.\end{matrix}\right.\)
Vậy........
2/ Ta có: \(2011\equiv1\left(mod10\right)\)
\(2011^{201}\equiv1^{201}\equiv1\left(mod10\right)\);
Có: \(1997^3\equiv3\left(mod10\right)\)
\(\left(1997^3\right)^4\equiv3^4\equiv1\left(mod10\right)\)
\(\left(1997^{12}\right)^{14}\equiv1^{14}\equiv1\left(mod10\right)\) hay \(1997^{168}\equiv1\left(mod10\right)\)
=> \(2011^{201}-1997^{168}\equiv1-1\equiv0\left(mod10\right)\)
hay \(2011^{201}-1997^{168}\) chia hết cho 10
=> Đpcm
\(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)
\(\Rightarrow4\left(2+x\right)-10x=5\left(1-2x\right)+5\)
\(\Rightarrow8+4x-10x=5-10x+5\)
\(\Rightarrow8+4x=10\)
\(\Rightarrow4x=2\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy tập nghiệm của phương trình là A = { 1/2 }
\(\frac{8+4x-10x-5+10x}{20}=0,25\)
\(\frac{4x+3}{20}=0,25\)
\(4x+3=5\)
\(x=\frac{1}{2}\)
=>0,2x+0,4-0,5x=0,25-0,5x+0,25
=>0,2x+0,4=0,5
=>0,2x=0,1
=>x=1/2
a) Ta có: \(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow-2x+3+x+4=0\)
\(\Leftrightarrow-x+7=0\)
\(\Leftrightarrow-x=-7\)
hay x=7
Vậy: S={7}
b) Ta có: \(\dfrac{2+x}{5}-0.5x=\dfrac{1-2x}{4}+0.25\)
\(\Leftrightarrow\dfrac{4\left(2+x\right)}{20}-\dfrac{0.5x\cdot20}{20}=\dfrac{5\left(1-2x\right)}{20}+\dfrac{20\cdot0.25}{20}\)
\(\Leftrightarrow4\left(2+x\right)-10x=5\left(1-2x\right)+5\)
\(\Leftrightarrow8+4x-10x=5-10x+5\)
\(\Leftrightarrow-6x+8=-10x+10\)
\(\Leftrightarrow-6x+8+10x-10=0\)
\(\Leftrightarrow4x-2=0\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
d) Ta có: \(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-59}{1}+\dfrac{x-58}{2}+\dfrac{x-57}{3}\)
\(\Leftrightarrow\dfrac{x-1}{59}-1+\dfrac{x-2}{58}-1+\dfrac{x-3}{57}-1=\dfrac{x-59}{1}-1+\dfrac{x-58}{2}-1+\dfrac{x-57}{3}-1\)
\(\Leftrightarrow\dfrac{x-60}{59}+\dfrac{x-60}{58}+\dfrac{x-60}{57}=\dfrac{x-60}{1}+\dfrac{x-60}{2}+\dfrac{x-60}{3}\)
\(\Leftrightarrow\left(x-60\right)\left(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}\right)-\left(x-60\right)\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left(x-60\right)\left(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
mà \(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}-1-\dfrac{1}{2}-\dfrac{1}{3}\ne0\)
nên x-60=0
hay x=60
Vậy: S={60}
Sau khi tính giá trị của mỗi giá trị theo các giá trị của x đã cho ta được bảng sau:
x | -2,5 | -2,25 | -1,5 | -1 | 0 | 1 | 1,5 | 2,25 | 2,5 |
y = 0,5x | -1,25 | -1,125 | -0,75 | -0,5 | 0 | 0,5 | 0,75 | 1,125 | 1,25 |
y = 0,5x + 2 | 0,75 | 0,875 | 1,25 | 1,5 | 2 | 2,5 | 2,75 | 3,125 | 3,25 |
a) \(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}=\dfrac{x}{6}=\dfrac{6x}{6}\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow2x-6x-3=x-6x\)
\(\Leftrightarrow2x-6x-x+6x=3\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
b) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)
\(\Leftrightarrow\dfrac{4\left(2+x\right)}{20}-\dfrac{10x}{20}=\dfrac{5\left(1-2x\right)}{20}+\dfrac{5}{20}\)
\(\Leftrightarrow4\left(2+x\right)-10x=5\left(1-2x\right)+5\)
\(\Leftrightarrow8+4x-10x=5-10x+5\)
\(\Leftrightarrow4x-10x+10x=5+5-8\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
\(S=\left\{\dfrac{1}{2}\right\}\)
(0,5x - 5) = (Y2 - 0,25) = 0
=>x = 10
=> y2 = 0,25 ; y = 0,5
0,5x-5=y2-0,25=0
x=0,1 và y=0,5