1.so sánh: (202015+112015)2016 và (202016 + 112016)2015
2.tìm x,y biết: 2x2+3y2=77
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Ta có: P(x) = 2x2 - 3y2 + 5y2 - 1 + 5x2 - 4y2
= 7x2 - 2y2 - 1.
Ta có :
\(x=\frac{2016^{2017}+1}{2016^{2016}+1}\)
\(\frac{1}{2016}x=\frac{2016^{2017}+1}{2016^{2017}+2016}=\frac{2016^{2017}+2016-2015}{2016^{2017}+2016}\)
\(\Rightarrow\frac{1}{2006}x=1-\frac{2015}{2016^{2017}+2016}\)
Ta lại có :
\(y=\frac{2016^{2016}+1}{2016^{2015}+1}\)
\(\Rightarrow\frac{1}{2016}y=\frac{2016^{2016}+1}{2016^{2016}+2016}=\frac{2016^{2016}+2016-2015}{2016^{2016}+2016}\)
\(\Rightarrow\frac{1}{2016}y=1-\frac{2015}{2016^{2016}+2016}\)
Mà \(\frac{2015}{2016^{2017}+2016}< \frac{2015}{2016^{2016}+2016}\)(so sánh mẫu)
\(\Rightarrow1-\frac{2015}{2016^{2017}+2016}>1-\frac{2015}{2016^{2016}+2016}\)
\(\Rightarrow\frac{1}{2016}x>\frac{1}{2016}y\)
\(\Rightarrow x>y\)
DÀI QUÁ KHÔNG TÍNH ĐƯỢC. CÁI NÀY CÓ MÀ ĐI HỎI THẦN ĐỒNG VỀ MÔN TOÁN ĐI
Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
2x^2-3y^2+4z^2=280
=>2*9k^2-3*16k^2+4*25k^2=280
=>k^2=4
TH1: k=2
=>x=6; y=8; z=10
TH2: k=-2
=>x=-6; y=-8; z=-10
Ta có:
\(2x+y=11z\) và \(3x-y=4z\)
Chia theo vế ta có:
\(\dfrac{2x+y}{3x-y}=\dfrac{11z}{4z}=\dfrac{11}{4}\)
\(\Leftrightarrow4\left(2x+y\right)=11\left(3x-y\right)\)
\(\Leftrightarrow8x+4y=33x-11y\)
\(\Leftrightarrow15y=25x\)
\(\Leftrightarrow3y=5x\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}=k\)
\(\Rightarrow x=3k,y=5k\)
Thay vào Q ta có:
\(Q=\dfrac{2\cdot\left(3k\right)^2-3\cdot3k\cdot5k}{\left(3k\right)^2+3\cdot\left(5y\right)^2}\)
\(Q=\dfrac{18k^2-45k^2}{9k^2+75k^2}\)
\(Q=\dfrac{k^2\left(18-45\right)}{k^2\left(9+75\right)}\)
\(Q=\dfrac{-27}{84}=-\dfrac{9}{28}\)
\(\dfrac{2x+y}{3x-y}=\dfrac{11}{4}\)
=>33x-11y=8x+4y
=>25x=15y
=>5x=3y
=>x/3=y/5=k
=>x=3k; y=5k
\(Q=\dfrac{2\cdot9k^2-3\cdot3k\cdot5k}{9k^2+3\cdot25k^2}=\dfrac{18-9\cdot5}{9+3\cdot25}=\dfrac{-9}{28}\)
Bài 2:
a: \(\left(x-8\right)\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
=>\(4x-3-x-5=30-3x\)
=>3x-8=30-3x
=>6x=38
=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)
Bài 6:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)
Do đó:HD<HC
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
câu 1. tìm x nguyên để \(\frac{-35}{6}\)<x<\(\frac{-18}{5}\)
<=> -4,375<x<-3,6
mà x\(\in\)Z nên x={-4}
câu 2. A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)
B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)
Vì \(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\); \(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)
Vậy B<A
khó đấy