\(\frac{1}{6}\).\(\frac{1}{12}\).\(\frac{1}{20}\).\(\frac{1}{30}\).\(\frac{1}{42}\).\(\frac{1}{56}\).\(\frac{1}{72}\).\(\frac{1}{90}\).\(\frac{1}{110}\)=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{10\cdot11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
= 1/2.3 +1/3.4+1/4.5+...+1/10.11
=1/2-1/3+1/3-1/4+1/4-1/5+...+1/10-1/11
=1/2-1/11
=9/22
~~~~~~~~~~~~ chúc bạn học thật giỏi~~~~~~~~~~~~~
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\)
Chỉ cần viết ra là: \(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}=1-\frac{1}{11}=\frac{10}{11}\)
1/2+1/6+1/12+...+1/110
=1/1.2+1/2.3+1/3.4+...+1/10.11
=1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11
=1-1/11=10/11
\(\frac{1}{12}\)+\(\frac{1}{20}\)+1/30+1/42+1/56+1/72+1/90+1/110+1/132
=\(\frac{1}{3\cdot4}\)+\(\frac{1}{4.5}\)+1/5x6+1/6x7+1/7x8+1/8x9+...1/11x12
=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12
=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11--1/12
=1/3-1/12
=1/4
Xin lỗi bạn nhé!vì trưa rồi nên mình làm vậy cho nhanh thôi!hjhj!
Nếu thấy mình làm đúng thì k mình nha!Thanks các bạn nhìu!
=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11+1/12
=1/3-1/12
=4/12-1/12
=3/12
=1/4
\(A=\frac{1}{20}+\frac{1}{30}+...+\frac{1}{132}\)
\(A=\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{11\times12}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{4}-\frac{1}{12}\)
\(A=\frac{3}{12}-\frac{1}{12}=\frac{2}{12}=\frac{1}{6}\)
\(\Leftrightarrow\)\(\frac{1}{3}\)-\(\frac{1}{3}\)+\(\frac{1}{4}\)-\(\frac{1}{4}\)+\(\frac{1}{5}\)-....+\(\frac{1}{10}\)=x-\(\frac{113}{260}\)
\(\Leftrightarrow\)x-\(\frac{113}{260}\)=\(\frac{1}{10}\)
\(\Leftrightarrow\)x=\(\frac{139}{260}\)