Chứng minh rằng giữa 2 số hữu tỉ bao giờ cũng có 1 số hữu tỉ ở giữa ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn vào link này tham khảo nha: https://olm.vn/hoi-dap/question/685468.html
Nguồn: câu hỏi tương tự
Có 1/3 và 2/3 liền kề nhau.
Nhưng khi nhân cả mẫu và tử lên cùng 1 số:
2/6 và 4/6.
Suy ra ta có 1/2 ở giữa.
Cách chứng minh:
Gọi 2 số hữu tỉ là a/b và (a+1)/b.(cách nhau 1/b)
2a/2b và 2(a+1)/2b
2a/2b và (2a+2)/2b.
=>Ta có (2a+1)/2b ở giữa.
Ví dụ cho dễ hiểu:
Có 1/3 và 2/3 liền kề nhau.
Nhưng khi nhân cả mẫu và tử lên cùng 1 số:
2/6 và 4/6.
Suy ra ta có 1/2 ở giữa.
Cách chứng minh:
Gọi 2 số hữu tỉ là a/b và (a+1)/b.(cách nhau 1/b)
2a/2b và 2(a+1)/2b
2a/2b và (2a+2)/2b.
=>Ta có (2a+1)/2b ở giữa.
Chúc em học tốt^^
Ví dụ cho dễ hiểu:
Có 1/3 và 2/3 liền kề nhau.
Nhưng khi nhân cả mẫu và tử lên cùng 1 số:
2/6 và 4/6.
Suy ra ta có 1/2 ở giữa.
Cách chứng minh:
Gọi 2 số hữu tỉ là a/b và (a+1)/b.(cách nhau 1/b)
2a/2b và 2(a+1)/2b
2a/2b và (2a+2)/2b.
=>Ta có (2a+1)/2b ở giữa.
Chúc em học tốt^^
Theo đề bài, ta có:
\(x=\frac{a}{m};y=\frac{b}{m}\left(x< y\right)\)
Vì x<y => a<b
Ta có: \(x=\frac{2a}{2m}\)
\(y=\frac{2b}{2m}\)
\(z=a+\frac{b}{2m}\)
\(\Rightarrow a< b\)
\(\Rightarrow a+a< a+b\Rightarrow2a< a+b\)
Vì 2a<a+b => x< z (1)
Vì \(a< b\Rightarrow a+b>b+b\Rightarrow a+b< 2b\)(2)
Vì a+b < 2b nên z<y
Từ (1) và (2) => x<z<y ( đpcm)
=> giữa 2 số hữu tỉ bao giờ cx có 1 số hữu tỉ .
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafffffffffffffffffffffffffffffffffff
fffffffffffffffffffffffffffffff
faaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooossssssssssssssssssssssssssssssssssssssss