K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2021

Ta có: \(\left(x+3\right)^2+\left(x^2-9\right)^2=0\)

vì: (x + 3)2 \(\ge\)0; (x2 - 9)2 \(\ge\)0

=> \(\hept{\begin{cases}x+3=0\\x^2-9=0\end{cases}}\) => \(\hept{\begin{cases}x=-3\\x^2=9\end{cases}}\)

=> \(\hept{\begin{cases}x=-3\\x=\pm3\end{cases}}\) => \(x=-3\)

=> -3 là nghiệm cảu đa thức (x + 3)2 + (x2 - 9)2

23 tháng 7 2021

Trả lời:

( x + 3 )+ ( x- 9 )2 = 0

<=> [ ( x + 3 ) - ( x2 - 9 ) ] [ ( x + 3 ) + ( x2 - 9 ) ] = 0

<=> [ ( x + 3 ) - ( x - 3 ) ( x + 3 ) ] [ ( x + 3 ) + ( x - 3 ) ( x + 3 ) ] = 0

<=> [ ( x + 3 ) ( 1 - x + 3 ) ] [ ( x + 3 ) ( 1 + x - 3 ) ] = 0

<=> ( x + 3 ) ( 1 - x + 3 ) ( x + 3 ) ( 1 + x - 3 ) = 0 

<=> ( x + 3 )2 ( 4 - x ) ( x - 2 ) = 0

<=> ( x + 3 )2 = 0 hoặc 4 - x = 0 hoặc x - 2 = 0

<=> x = - 3 hoặc x = 4 hoặc x = 2

Vậy x = - 3; x = 4; x = 2

23 tháng 7 2021

Ta có: x2 - x + 1 = x2 - 1/2.x - 1/2.x + 1/4 + 3/4 = x(x - 1/2) - 1/2(x - 1/2) + 3/4 = (x - 1/2)2 + 3/4 

Do (x  - 1/2)2 \(\ge\)với mọi x ; 3/4 > 0

=> (x - 1/2)2 + 3/4 > 0 với mọi x=> x2 - x + 1 > 0 với mọi x

=> đa thức x2 - x + 1 không có nghiệm

24 tháng 4 2017

tổng các hệ số = 0

PT có 1 nghiệm là x = 1.

Phân tích đa thức:

2x3 + 4x2 - 5x - 1 = (x - 1)(2x2 + 6x + 1)

PT: 2x3 + 4x2 - 5x - 1 = 0

<=>

(x - 1)(2x2 + 6x + 1)

<=>

x = 1

2x2 + 6x + 1 = 0

<=>

x = 1

x = \(\frac{-3-\sqrt{7}}{2}\)

x = \(\frac{-3+\sqrt{7}}{2}\)

26 tháng 3 2017

ĐKXĐ: x khác -2

\(A=\frac{2x^2+3x-2}{x+2}=0\Leftrightarrow2x^2+3x-2=0\Leftrightarrow2\left(x^2+\frac{3}{2}x-1\right)=0\)

\(\Leftrightarrow x^2+\frac{3}{2}x-1=0\Leftrightarrow x^2+2.\frac{3}{4}.x+\frac{9}{16}-\frac{25}{16}=0\Leftrightarrow\left(x+\frac{3}{4}\right)^2-\frac{25}{16}=0\)

\(\Leftrightarrow\left(x+\frac{3}{4}\right)^2=\frac{25}{16}\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{-5}{4}\\x+\frac{3}{4}=\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\left(loai\right)\\x=\frac{1}{2}\left(nhan\right)\end{cases}}\)

Vậy .............

26 tháng 4 2021

Ta có: 

\(\Delta'=1-9=-8< 0\)

Vậy phương trình vô nghiệm 

hay đa thức f(x) vô nghiệm

29 tháng 3 2017

a) Ta có : x^2 + 1 = 0

=> x^2 = -1

Vì x^2 > hoặc = 0 => x^2 + 1 >- 1

Vậy đa thức trên vô nghiệm

b)Ta có : x^2 - 1= 0

=> x^2 = 1

Vì x^2 > hoặc = 0 => x^2 - 1 >1

Vậy đa thức trên vô nghiệm

   mk làm 2 bài khác nhau đó nha

31 tháng 3 2019

Sorry mình vừa nghĩ ra mà quên mất rồi

15 tháng 5 2021

Ta có: (x + 2) (x - 1) = 0

➩ x + 2 = 0 và x - 1 = 0

    x = -2               x = 1

Vậy x = -2 và x = 1 là nghiệm của đa thức f(x)

Vì f(-2) = 0; f(1) = 0

15 tháng 5 2021

Thank nha

a) (x-1)*(x+2)-(x-3)*(-x+4)=19

\(\Leftrightarrow x^2+2x-x-2-\left(-x^2+4x+3-12\right)=19\)

\(\Leftrightarrow x^2+2x-x-2+x^2-4x-3+12=19\)

\(\Leftrightarrow2x^2-3x+7-19=0\)

\(\Leftrightarrow2x^2-3x-12=0\)

Đề sai??

b) (2x -1)*(3x+5)-(6x-1)*(6x+1)=(-17)

\(\Leftrightarrow6x^2+10x-3x-5-\left(36x^2+6x-6x-1\right)=-17\)

\(\Leftrightarrow6x^2+10x-3x-5-36x^2-6x+6x+1=-17\)

\(\Leftrightarrow-30x^2+7x-4+17=0\)

\(\Leftrightarrow-30x^2+7x+13=0\)

???

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)