Tìm số tự nhiên có 3 chữ số, biết rằng nếu chuyển chữ số 7 ở số đó lên đầu thì ta được số mới hơn số lúc đầu 378 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab7=7ab-378=ab7
suy ra 7ab -378=ab7 =735-378=357
cho nên số đó bằng 357
1/
Số cần tìm \(\overline{ab7}\) theo đề bài
\(\overline{7ab}=2.\overline{ab7}+21\)
\(\Rightarrow700+\overline{ab}=20.\overline{ab}+14+21\)
\(\Leftrightarrow19.\overline{ab}=665\Rightarrow\overline{ab}=665:19=35\)
Số cần tìm là 357
2/
Gọi số cần tìm là \(\overline{ab}\) theo đề bài
\(\overline{ba}-\overline{ab}=63\)
\(10.b+a-10.a-b=63\)
\(9.\left(b-a\right)=63\Rightarrow b-a=7\)
\(a=\left(9-7\right):2=1\)
\(\Rightarrow b=9-a=9-1=8\)
Số cần tìm là 18
Gọi số phải tìm là abc3 , ta có :
abc3 - 3abc = 2079
1000a + 100b + 10c + 3 - 3000 + 100a + 10b + c = 2079
900a + 90 b + 9c - 2997 = 2079
9 x ( 100a + 10b + c ) = 2079 + 2997
9 x ( 100a + 10b + c ) = 5076
100a + 10b + c = 5076 : 9
100a + 10 b + c = 564
Suy ra a = 5 , b = 6 , c = 4 .
Vậy số phải tìm là : 5643 .
1. Gọi số cần tìm là \(\overline{ab}5\), số sau khi chuyển là \(5\overline{ab}\), ta có :
5ab
- ab5
288
*b - 5 = 8 => b = 13 (viết 3 nhớ 1)
*a - b = a - 3 = 8 => a = 12 (viết 2 nhớ 1)
Vậy số cần tìm là 235.
bạn lên [onlinemath] đi sẽ có nhiều người giỏi giải giúp bạn nhé
Số thỏa mãn đề bài có dạng: \(\overline{abc7}\)
Khi chuyển số lên đầu ta được số mới: \(\overline{7abc}\)
Theo bài ra ta có: \(\overline{7abc}\) - \(\overline{abc7}\) = 5859
7000 + \(\overline{abc}\) - \(\overline{abc}\) \(\times\) 10 - 7= 5859
(7000 - 7) - \(\overline{abc}\) \(\times\)( 10 - 1) = 5859
6993 - \(\overline{abc}\) \(\times\) 9 = 5859
\(\overline{abc}\) \(\times\) 9 = 6993 - 5859
\(\overline{abc}\) \(\times\) 9 = 1134
\(\overline{abc}\) = 1134 : 9
\(\overline{abc}\) = 126
Thay \(\overline{abc}\) = 126 vào biểu thức: \(\overline{abc7}\) ta được số cần tìm là: 1267
Số thỏa mãn đề bài có dạng: \(\overline{abc7}\)
Chuyển số 7 lên đầu ta được số mới: \(\overline{7abc}\)
Theo bài ra ta có: \(\overline{7abc}\) - \(\overline{abc7}\) =2443
7000 + \(\overline{abc}\) - \(\overline{abc}\) \(\times\) 10 - 7 = 2443
(7000 -7) - \(\overline{abc}\) \(\times\)( 10 - 1) = 2443
6993 - \(\overline{abc}\) \(\times\) 9 = 2443
\(\overline{abc}\) \(\times\) 9 = 6993 - 2443
\(\overline{abc}\) \(\times\) 9 = 4550
\(\overline{abc}\) = 4550 : 9
\(\overline{abc}\) = \(\dfrac{4550}{9}\)
Không có số nào thỏa mãn đề bài
Số thỏa mãn đề bài có dạng: \(\overline{abc7}\)
Chuyển số 7 lên đầu ta được số mới là: \(\overline{7abc}\)
Theo bài ra ta có:
\(\overline{7abc}\) - \(\overline{abc7}\) = 5859
7000 + \(\overline{abc}\) - \(\overline{abc}\) \(\times\) 10 - 7 = 5859
(7000 -7) - \(\overline{abc}\) \(\times\)(10 -1) = 5859
6993 - \(\overline{abc}\) \(\times\) 9 = 5859
\(\overline{abc}\) \(\times\) 9 = 6993 - 5859
\(\overline{abc}\) \(\times\) 9 = 1134
\(\overline{abc}\) = 1134 : 9
\(\overline{abc}\) = 126
Thay \(\overline{abc}\) = 126 vào biểu thức \(\overline{abc7}\) ta được số cần tìm là 1267
Đáp số: 1267
Lời giải:
Gọi số cần tìm là $\overline{abc7}$ với $a,b,c$ là số tự nhiên có 1 chữ số. $a>0$
Theo bài ra ta có:
$\overline{7abc}-\overline{abc7}=5859$
$7000+\overline{abc}-(\overline{abc}\times 10+7)=5859$
$7000+\overline{abc}-\overline{abc}\times 10-7=5859$
$6993+\overline{abc}-\overline{abc}\times 10=5859$
$6993+\overline{abc}=5859+\overline{abc}\times 10$
$6993-5859=\overline{abc}\times 10-\overline{abc}$
$1134=9\times \overline{abc}$
$\overline{abc}=1134:9=126$
Vậy số cần tìm là $1267$