K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2015

nếu a/b<c/d=>ad/bd<cb/db=>ad<cb

nếu ad<cb=>ad/bd<cb<bd=<a/b<c/d

nếu a/b<c/d=>ad<cb=>ad+ab<cb+ab=>a(b+d)<b(a+c)=>a/b<a+c/b+d

8 tháng 9 2018

Ta có : \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)                                                                         ( 1 )

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(d+b\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Vì \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{c}{d}=ad< bc\)

\(\Rightarrow ad+cd< bc+cd\)                                                             ( 2 )

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Bài 1: Các câu sau, câu nào đúng,câu nào sai?

a) Mọi số hữu tỉ dương đều lớn hơn 0      Đ

b) Nếu a là số hữu tỉ âm thì a là số tự nhiên       S

c) Nếu a là số tự nhiên thì a là số hữu tỉ âm            S

d) 0 là số hữu tỉ dương                             S

 a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a+c/b + d < c/d

17 tháng 6 2016

- Chứng minh thuận:

Nhân 2 vế của a/b với d, nhân 2 vế của c/d với b rồi so sánh

- Chứng minh đảo: Hơi khó giải thích...

Cộng ad với bd và bc với bd.... 

18 tháng 6 2016

Có gì mà loằng ngoằng vậy.

1./ Thuận: Nếu: \(\frac{a}{b}>\frac{c}{d}\)nhân cả 2 vế BĐT với tích bd >0 (vì b>0; d>0) BĐT không đổi chiều, ta có: \(\frac{a}{b}\cdot bd>\frac{c}{d}\cdot bd\Rightarrow a\cdot d>b\cdot c\)đpcm

2./ Nghịch: Nếu \(a\cdot d>b\cdot c\)chia cả 2 vế BĐT với tích bd >0 (vì b>0; d>0) BĐT không đổi chiều, ta có: \(\frac{a\cdot d}{b\cdot d}>\frac{b\cdot c}{b\cdot d}\Rightarrow\frac{a}{b}>\frac{c}{d}\)đpcm

20 tháng 7 2019

\(\frac{a}{b}\)<\(\frac{c}{d}\)

=> \(\frac{ad}{bd}\)<\(\frac{bc}{bd}\)(tích chéo)

=> ad<bc(điều phải chứng minh)

t.i.c.k cho a nha

a) ta có \(\frac{a}{b}=\frac{ad}{bd}\)cả tử và mẫu với d >0

            \(\frac{c}{d}=\frac{cb}{bd}\)cả tử và mẫu với b >0

vì \(\frac{a}{b}< \frac{c}{d}\)nên \(\frac{ab}{bd}< bc,db\Rightarrow ad< bc\)vì tích bd >0

21 tháng 6 2017

- Ta có trên trục số 2 điểm A và B lần lượt là : \(\frac{a}{b},\frac{c}{d}\)
mà trên trục số \(\frac{a}{b}\)nằm bên trái \(\frac{c}{d}\)=) \(\frac{a}{b}< \frac{d}{c}\)
- Như ta đã biết : Nếu \(\frac{a}{b}< \frac{c}{d}\)=) \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
- Mà kí hiệu \(\frac{a+c}{b+d}\)là C
Vậy ta luôn có \(C\)nằm giữa \(A,B\)=) Trên trục số,giữa 2 điểm biểu diễn 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)luôn tồn tại 1 điểm biểu diễn số hữu tỉ khác ( ĐPCM )

15 tháng 4 2020

có ai trả lời hộ mình câu hỏi này ở trong trang cá nhân của mình ko

16 tháng 6 2016

a) \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (quy đồng mẫu chung)

Vì b,d > 0 nên bd > 0. Do đó ad < bc (đpcm)

b) ad < bc \(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (cùng chia cho bd)

Vì b,d > 0 nên bd > 0. Do đó \(\frac{a}{b}< \frac{c}{d}\) (rút gọn tử và mẫu)

16 tháng 6 2016

a, Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\Rightarrow ad< cb\) 

b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)