Tìm a và b biết a/2=3/b và a:b= 4. Làm ơn giúp mình với mình cần trước 3h
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài của bạn giống bài của Vũ Thị Thúy, mìh đã giải cho bạn ấy rồi đó. bn xem bài của bn ấy nhé
K ĐÚNG NHA
Đặt a + b = ab = a : b = k
Ta có : a/b = k => a = kb
=> kb + b = kbb = k
=> (k + 1) b = kb2 = k
Từ kb2 = k
=> kb2 - k = 0
=> k (b2 - 1) = 0
=> k = 0 hoặc b2 - 1 = 0
=> k = 0 hoặc b = ±1
Trường hợp k = 0 => a = 0
=> 0 + b = 0 => b = 0 (loại vì b ≠ 0)
Trường hợp b = 1
=> a + 1 = a . 1 => a + 1 = a => 1 = 0 (vô lí)
=> b = 1 ko thỏa mãn
Trường hợp b = -1
=> a - 1 = a (-1) => a - 1 = -a => a - 1 +a = 0 => 2a - 1 = 0 => a = 1/2
Lời giải:
a. $ƯC(a,b)\in Ư(36)=\left\{\pm 1; \pm 2; \pm 3; \pm 4; \pm 6; \pm 9; \pm 12; \pm 18; \pm 36\right\}$
b. $Ư(a,b)\in Ư(50)=\left\{\pm 1; \pm 2; \pm 5; \pm 10; \pm 25; \pm 50\right\}$
Suy ra ước có 2 chữ số của $a,b$ là:
$\left\{\pm 10; \pm 25; \pm 50\right\}$
\(a-b=\dfrac{a}{b}=3\left(a+b\right)\\ \Leftrightarrow3a+3b-a+b=0\\ \Leftrightarrow2a+4b=0\\ \Leftrightarrow a+2b=0\Leftrightarrow a=-2b\)
Mà \(a-b=\dfrac{a}{b}\Leftrightarrow-3b=-\dfrac{2b}{b}=-2\Leftrightarrow b=\dfrac{2}{3}\)
\(\Leftrightarrow a=-2\cdot\dfrac{2}{3}=-\dfrac{4}{3}\)
Vậy \(\left(a;b\right)=\left(-\dfrac{4}{3};\dfrac{2}{3}\right)\)
Bài 1:
Số a là: \(\left(2005+99\right):2=1052\)
Số b là: \(1052-99=953\)
Đáp số:...
Bài 2:
Tổng số phần bằng nhau:
\(2+3=5\)(phần)
Số a là: \(50:5\times2=20\)
Số b là: \(20:\dfrac{2}{3}=30\)
Đáp số:...
#AvoidMe
a.
\(A=B\)
\(\Leftrightarrow\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{-16}{x^2-4}\);ĐK:\(x\ne\pm2\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-16}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2=-16\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4+16=0\)
\(\Leftrightarrow8x+16=0\)
\(\Leftrightarrow8\left(x+2\right)=0\)
\(\Leftrightarrow x=-2\left(ktm\right)\)
Vậy không có giá trị x thỏa mãn A=B
b.
\(A:B=\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}:\dfrac{-16}{\left(x-2\right)\left(x+2\right)}< 0\)
\(\Leftrightarrow\dfrac{x^2+4x+4-x^2+4x-4}{-16}< 0\)
\(\Leftrightarrow\dfrac{8x}{-16}< 0\)
\(\Leftrightarrow\dfrac{8x}{16}>0\)
\(\Leftrightarrow\dfrac{x}{2}>0\)
\(\Leftrightarrow x>0\)
Lời giải:
b. Tam giác $ABC$ vuông tại $A$ và $C=45^0$ nên:
$B=90^0-C=90^0-45^0=45^0$
Do đó, tam giác $ABC$ vuông cân tại $A$
$\Rightarrow AC=AB=50$ (cm)
Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{50^2+50^2}=50\sqrt{2}$ (cm)
f.
Theo định lý Pitago: $AC=\sqrt{BC^2-AB^2}=\sqrt{7^2-5^2}=2\sqrt{6}$ (cm)
$\sin B=\frac{AC}{BC}=\frac{2\sqrt{6}}{7}$
$\Rightarrow B=44,42^0$
$C=90^0-B=90^0-44,42^0=45,58^0$
b) Xét ΔABC vuông tại A có \(\widehat{C}=45^0\)(gt)
nên ΔABC vuông cân tại A(Định nghĩa tam giác vuông cân)
Suy ra: \(\widehat{B}=45^0\) và AC=50(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=50^2+50^2=5000\)
hay \(BC=50\sqrt{2}\left(cm\right)\)
Ta có: \(\dfrac{a}{2}=\dfrac{3}{b}\)
nên ab=6
Ta có: a:b=4
nên a=4b
Thay a=4b vào ab=6, ta được:
\(4b^2=6\)
\(\Leftrightarrow b^2=\dfrac{3}{2}\)
hay \(b\in\left\{\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right\}\)
\(\Leftrightarrow a\in\left\{2\sqrt{6};-2\sqrt{6}\right\}\)
Ta có:
\(\dfrac{a}{2}=\dfrac{3}{b}\\ \Rightarrow a.b=3.2=6\left(1\right)\)
và theo bài ra: \(a:b=4\left(2\right) \)
Lấy \(\left(1\right)\) nhân với \(\left(2\right)\) ( nhân vế theo vế ta được:
\(a.b.a:b=6.4\\ \Leftrightarrow a^2=24\\ \Leftrightarrow\left[{}\begin{matrix}a=\sqrt{24}\\a=-\sqrt{24}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}b=6:\sqrt{24}\\b=6:\left(-\sqrt{24}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}b=\dfrac{\sqrt{6}}{2}\\b=-\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)
Vậy...