giá trị nhỏ nhất của ∣2009x 2010∣
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2009x-2010\right|\ge0\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2010}{2009}\)
Lời giải:
$|2009x-2010|\geq 0$ với mọi $x\in\mathbb{R}$ theo tính chất trị tuyệt đối
Vậy GTNN của $|2009x-2010|$ là $0$
Giá trị này đạt tại $2009x-2010=0$
$\Leftrightarrow x=\frac{2010}{2009}$
\(\left|2009x-2010\right|\ge0\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2010}{2009}\)
\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)
GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)
Biểu thức ko tồn tại GTLN
ta có |x+3|>=0;|2y-14|>=0
=>|x+3|+|2y-14|>=0
=>S>=2016
dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0
=>x+3=0 và 2y-14=0
x=-3 và y=7
Vậy GTNN của S=2016 khi x=-3 và y=7
Ta thấy: |x-10| >= 0 (1); |x-10| >= 0 (2)
Cộng 2 bđt cùng chiều (1) và (2) ta được: |x-10| + |x-10| >= 0 <=> A= |x-10| + |x-10| -2 >= -2
=> minA = -2
Dấu đẳng thức xảy ra khi và chỉ khi x=10 và y=-100
Chắc v!! =)))
a) Vì \(\left|x-5\right|\ge0\)nên \(100-\left|x-5\right|\le100\)
Để A lớn nhất thì \(\left|x-5\right|=0\Leftrightarrow x=-5\)
Vậy A lớn nhất bằng 100 khi và chỉ khi x= -5
b) Vì \(\left|y-3\right|\ge0\)nên \(\left|y-3\right|+50\ge50\)
Để B lớn nhất thì \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy B nhỏ nhất bằng 50 khi và chỉ khi y= 3