Em đag thắc mắc 1 bài toán cần gấp ạ . Cho Tam giác ABC vuông tại A , đườg cao AH , AB=15cm , AC =20cm . Gọi E là điểm đối xứng của B qua H vẽ hình bình hành ADCE
a) tính AH
b) tính diện tích tứ giác ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên bạn chứng minh \(\Delta AHC\infty\Delta BAC\left(g.g\right)\Rightarrow\frac{AC}{BC}=\frac{HC}{AC}\)
Hay \(\frac{20}{25}=\frac{AH}{15}\) .Tính được AH = 12 cm.
Áp dụng định lí pitago , ta tính được BH = 9 cm nên HD = 9 cm
\(BH+HD+DC=BC\Rightarrow9+9+DC=25\Rightarrow DC=7cm\)
AEDC là hình bình hành(gt) \(\Rightarrow AE=DC=7cm\)
Diện tích hình ABCE là:
\(\frac{\left(AE+BC\right).AH}{2}=\frac{\left(7+25\right).12}{2}=192\left(cm^2\right)\)
a: BC=căn 15^2+20^2=25cm
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*25=15*20=300
=>AH=12cm
b: Sửa đề: D đối xứng B qua H
ADCE là hình bình hành
=>AE//CD
=>AE//BC
=>AECB là hình thang
c: BH=15^2/25=9cm
=>BD=2*9=18cm
CD=25-18=7cm
AECD là hình bình hành
=>AE=CD=7cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)