K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

Bài 1: 

a: Xét ΔABD có

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của DC

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

28 tháng 12 2016

bài này trong SGK hay là SBT cũng có dạng tương tự hay sao ấy

28 tháng 12 2016

KhÔng có đâu bạn

22 tháng 5 2015

Bạn tự vẽ hình 

a)*ta có M là trung điểm của AB

             N là trung điểm của BC

Suy ra: MN là đường trung bình của tam giác ABC

   *ta có N là trung điểm của BC

            P là trung điểm của DC

Suy ra : NP là đường trung bình của tam giác BCD

b)ta có Q là trung điểm của AD

            P là trung điểm của DC

Suy ra PQ là đường trung bình của tam giác ADC

=>PQ song song với AC;PQ=\(\frac{AC}{2}\)

mà MN song song với AC;MN=\(\frac{AC}{2}\)(MN là đường trung bình của tam giác ABC)

nên: PQ song song MN;PQ=MN

Suy ra MNPQ là hình binh hành(1)

ta lại có : AD=BC(ABCD là hình thang cân) 

=>AQ=BN=QD=NC(Q,N lần lượt là trung điểm của AD,BC)

Xét tam giác MNB và tam giác MQA

BN=AQ (chứng minh trên)

MB=MA(M là trung điểm của AB)

góc MAQ=góc MBN

Suy ra tam giác MNB=tam giác MQA(c-g-c)

=>MQ=MN( 2 cạnh tương ứng )(2)

Từ (1) và (2) suy ra :

MNPQ là hình thoi

=> MP vuông góc NQ

21 tháng 11 2017

a) xét tam giác BAD ta có:

M là trung điểm AB (gt)

F là trung điểm BD (gt)

vậy MF là đường trung bình tam giác BAD

=>MF//AD và MF=1/2 AD (1)

xét tam giác ADC ta có:

P là trung điểm CD (gt)

E là trung điểm AC (gt)

vậy PE là đường trung bình tam giác ADC

=>PE//AD và PE=1/2 AD (2)

từ (1) và (2) => PE//MF và PE=MF=1/2 AD

tương tự như vậy với ME và PF ta có được ME//PF và ME=PF=1/2 BC

ta có:

ME=PF=1/2 BC (cmt)

MF=PE=1/2 AD (cmt)

AD=BC (gt)

vậy ME=PF=MF=PE 

=>MEPF là hình thoi

b) vẽ tứ giác MQPN. gọi giao điểm QN và MP là K

xét tam giác ABD ta có:

Q là trung điểm AD (gt)

M là trung điểm AB (gt)

vậy MQ là đường trung bình tam giác ABD

=> MQ//BD và MQ=1/2 BD (1)

xét tam giác CBD ta có:

P là trung điểm CD (gt)

N là trung điểm BC (gt)

vậy PN là đường trung bình tam giác CBD

=> PN//BD và PN=1/2 BD (2)

từ (1) và (2)=> PN//MQ và PN=MQ

=>MQPN là hình bình hành

mà QN và MP là hai đường chéo và K là giao điểm

=>K là trung điểm của QN và MP (3)

xét hình thoi MEPF ta có:

MP và EF là hai đường chéo

K là trung điểm MP (cmt)

=> K là trung điểm EF (4)

từ (3) và (4)=> QN,MP,EF đồng quy tại K.

21 tháng 11 2017

bài này khá đơn giản nên bạn tự vẽ hình nha !