bài 1 :Cho góc AOB= 90 độ trong góc AOB có tia OC trên nửa mặt phẳng bờ OB không chứa tia OC vẽ tia OD sao cho góc AOC = BOD . Vì sao OC Vuông góc với OD
bài 2 Chứng minh rằng tia phân giác của hai góc kề bù Thì vuông góc với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do mình không biết vẽ hình như nào nên mình sẽ chỉ giải bài thôi nhé , thoog cảm
Bài 1
Ta có \(\widehat{AOC}+\widehat{BOD}+\widehat{COD}=120^0\)
hay \(30^o+30^o+\widehat{COD}=120^o\)
\(\Rightarrow\widehat{COD}=120^o-30^o-30^o=60^o\)
Mà \(\widehat{AOC}+\widehat{COD}=30^o+60^o=90^o\)
Hay OA vuông góc với OD
Tương tự ta có OB vuông góc với OC
Vậy OA vuông góc với OD ; OB vuông góc với OC
Hình tự vẽ nha bạn
Ta có: ∠ AOC + ∠ BOC = ∠ AOB
⇒ 60o + ∠ BOC = 90o
⇒ ∠ BOC = 30o (1)
Lại có: ∠ BOC + ∠ COD = ∠ BOD
⇒ 30o + ∠COD = 60o
⇒ ∠ COD = 30o (2)
Từ (1) và (2) ⇒ ∠ BOC = ∠ COD = 30o
Suy ra: OC là phân giác của ∠ BOD
Ta có: ∠ COD + ∠ AOD = ∠ AOC
⇒ 30o + ∠ AOD = 60o
⇒ ∠ AOD = 30o
Vì ∠ COD = ∠ AOD = 30o nên OD là phân giác của ∠ AOC
b) Vì OB là phân giác của DOE nên ∠ BOD = ∠ BOE = 60\(^0\)
Ta có: ∠ BOC + ∠ BOE = ∠ COE
⇒ 30o + 60o = ∠ COE
⇒ ∠ COE = 90o
⇒ OC ⊥ OE ( đpcm )
Tia Od thuộc nửa mặt phẳng bờ Ob không chứa Oc
=> Tia Ob nằm trong ^cOd
=> ^cOd = ^cOb + ^bOd = ^cOb + ^ aOc = ^aOb = 90 độ.
=> Tia Oc và tia Od vuông góc với nhau.
bài 2:
góc moz = 1/2 góc xoz (1) (vì om là p/g của xoz)
góc noz = 1/2 góc yoz (2) (vì on là tia p/g của góc yoz)
từ (1) và(2) ta có : moz + noz = 1/2xoz + 1/2 yoz
moz + noz = 1/2 ( xoz + yoz)
moz + noz = 1/2. 180 độ
moz + noz = 90 độ