Xác định a và b để ax3+bx2-11x+30 chia hết cho x2-3x-10
GIẢI DÙM MIK BẰNG CÁCH ĐẶT PHÉP TÍNH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần còn lại dành cho bạn ;) Đến đây nắm vững lý thuyết làm oke
- Để hai đa thức trên chia cho nhau hết thì :\(\left\{{}\begin{matrix}7a-4=0\\b-2\left(1-3a\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7a=4\\6a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{4}{7}\\b=-\dfrac{10}{7}\end{matrix}\right.\)
Vậy ...
Đáp án A
Ta có f x + 1 = x 3 + 3 x 2 + 3 x + 2 = x + 1 3 + 1 ⇒ f x = x 3 + 1
Ta có (ax3 + bx2 - 11x + 30) : (x2 - 3x - 10) = ax + 3a + b (dư (19a +3b - 11)x + 10(b + 3a +3)]
Để (ax3 + bx2 - 11x + 30) \(⋮\) (x2 - 3x - 10) khi \(\hept{\begin{cases}19a+3b-11=0\\b+3a+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=-9\end{cases}}\)
Vậy a = 2 ; b = -9