K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AMND có 

AM//DN

AM=DN

Do đó: AMND là hình bình hành

Suy ra: AD=NM

b) Xét tứ giác BCNM có 

BM//CN

BM=CN

Do đó: BCNM là hình bình hành

 

a) Xét tứ giác AMND có 

AM//ND

\(AM=ND\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: AMND là hình bình hành

Suy ra: AD=MN

b) Xét tứ giác BCNM có 

BM//CN

\(BM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: BCNM là hình bình hành

Xét tứ giác AMCN có 

AM//CN

\(AM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)

Do đó: AMCN là hình bình hành

Suy ra: AN//CM

hay EN//MF

Xét tứ giác BMDN có

BM//DN

\(BM=DN\left(\dfrac{1}{2}AB=\dfrac{1}{2}DC\right)\)

Do đó: BMDN là hình bình hành

Suy ra: BN//MD

hay NF//ME

Xét tứ giác MENF có 

ME//NF(cmt)

MF//NE(cmt)

Do đó: MENF là hình bình hành

23 tháng 10 2023

a: \(AM=MB=\dfrac{AB}{2}\)

\(CN=DN=\dfrac{CD}{2}\)

mà AB=CD

nên AM=MB=CN=DN

Xét tứ giác AMND có

AM//ND

AM=ND

Do đó: AMND là hình bình hành

Hình bình hành AMND có AM=AD

nên AMND là hình thoi

b: Xét tứ giác BMNC có

BM//NC

BM=NC

Do đó: BMNC là hình bình hành

=>BN cắt MC tại trung điểm của mỗi đường

=>F là trung điểm chung của BN và MC

AMND là hình thoi

=>AN cắt MD tại trung điểm của mỗi đường

=>E là trung điểm chung của AN và MD

Xét ΔMDC có

E,F lần lượt là trung điểm của MD,MC

=>EF là đường trung bình

=>EF//DC

4 tháng 12 2015

a,Vi ABCD la hbh(gt)

=>AB=CD;AB//CD

Ma M€AB;N€CD

=>MB//ND

Vi M la trung diem cua AB

=>MA=MB=AB/2

Vi N la trung diem cua CD

=>CN=ND=CD/2

Ma AB=CD(cmt)

=>MB=DN

Tg DMBN co:

MB//DN(cmt)

MB=ND(cmt)

=>Tg DMBN la hbh(dh)