K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

a. \(A=\left(4-5x\right)^2-\left(3+5x\right)^2\\ =\left(4-5x+3+5x\right)\left(4-5x-3-5x\right)\\ =7.\left(-5x\right)=-35x\)

b. \(B=\left(3x-1\right)\left(1+3x\right)-\left(3x+1\right)^2\\ =9x^2-1-\left(9x^2+6x+1\right)\\ =9x^2-1-9x^2-6x-1\\ =-6x-2\)

a) Ta có: \(A=\left(4-5x\right)^2-\left(5x+3\right)^2\)

\(=\left(4-5x-5x-3\right)\left(4-5x+5x+3\right)\)

\(=7\left(-10x+1\right)\)

\(=-70x+7\)

b) Ta có: \(B=\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)^2\)

\(=\left(3x+1\right)\left(3x-1-3x-1\right)\)

\(=-2\left(3x+1\right)\)

\(=-6x-2\)

c) Ta có: \(C=\left(2x+5\right)^3-\left(2x-5\right)^3-\left(120x^2+49\right)\)

\(=8x^3+60x^2+150x+125-\left(8x^3-60x^2+150x-125\right)-120x^2-49\)

\(=8x^3-60x^2+150x+76-8x^3+60x^2-150x+125\)

\(=201\)

9 tháng 1 2022

5A

6B

7B

8D

9 tháng 1 2022

5A

6B

7B

8D

12 tháng 8 2021

từ điểm B kẻ \(Bz//Cy=>\angle\left(BCy\right)+\angle\left(CBz\right)=180^o\)(góc trong cùng phía)

\(=>\angle\left(CBz\right)=180^o-130^o=50^o\)

\(=>\angle\left(ABz\right)=\angle\left(ABC\right)+\angle\left(CBz\right)=50^o+72^o=122^o\)

\(=>\angle\left(BAx\right)+\angle\left(ABz\right)=180^o\)

mà 2 góc này ở vị trí trong cùng phía

\(=>Ax//Bz=>Ax//Cy\)

15 tháng 9 2021

Áp dụng t/c dãy tỉ số bằng nhau

\(\dfrac{a}{2013}=\dfrac{b}{2012}=\dfrac{c}{2011}=\dfrac{a-c}{2}=\dfrac{a-b}{1}=\dfrac{b-c}{1}\\ \Rightarrow a-c=2\left(a-b\right)=2\left(b-c\right)\)

\(\Rightarrow H=\dfrac{\left[2\left(a-b\right)\right]^4}{\left(a-b\right)^2\left(a-b\right)^2}=\dfrac{16\left(a-b\right)^4}{\left(a-b\right)^4}=16\)

 

 

 

15 tháng 9 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=2a\\c+a=2b\\a+b=2c\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}=\dfrac{2a}{a}+\dfrac{2b}{b}+\dfrac{2c}{c}=2+2+2=6\)

15 tháng 9 2021

P=
\(\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}=\dfrac{a}{b+c}.\left(\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\right):\left(\dfrac{a}{b+c}\right)=\left(\dfrac{b+c}{a}.\dfrac{a}{b+c}+\dfrac{c+a}{b}.\dfrac{a}{b+c}+\dfrac{a+b}{c}.\dfrac{a}{b+c}\right):\dfrac{a}{b+c}=\left(\dfrac{b+c}{a}.\dfrac{a}{b+c}+\dfrac{c+a}{b}.\dfrac{b}{c+a}+\dfrac{a+b}{c}.\dfrac{c}{a+b}\right):\dfrac{a}{b+c}=\left(1+1+1\right):\dfrac{a}{b+c}=3.\dfrac{b+c}{a}=\dfrac{3b+3c}{a}\)

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:

Bổ sung điều kiện $a,b,c$ không thể đồng thời bằng $0$

Từ đkđb suy ra:
\(\frac{6(10a-15b)}{2007.6}=\frac{15(6b-10c)}{15.2008}=\frac{10(15c-6a)}{10.2009}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{6(10a-15b)}{2007.6}=\frac{15(6b-10c)}{15.2008}=\frac{10(15c-6a)}{10.2009}=\frac{6(10a-15b)+15(6b-10c)+10(15c-6a)}{2007.6+15.2008+10.2009}=0\)

\(\Rightarrow 10a-15b=6b-10c=15c-6a=0\)

\(\Leftrightarrow 10a=15b; 6b=10c; 15c=6a\Leftrightarrow \frac{a}{15}=\frac{b}{10}=\frac{c}{6}\)

Đặt $\frac{a}{15}=\frac{b}{10}=\frac{c}{6}=k$ thì: $a=15k, b=10k, c=6k$

Vì $a,b,c$ không thể đồng thời bằng $0$ nên $k\neq 0$

Khi đó: 

$P=\frac{15k.10k+10k.6k+15k.6k}{(15k)^2+(10k)^2+(6k)^2}$

$=\frac{300k^2}{361k^2}=\frac{300}{361}$

15 tháng 9 2021

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=a+c\\2c=a+b\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{\left(a+b\right)^3}{c^3}+\dfrac{\left(b+c\right)^3}{a^3}+\dfrac{\left(c+a\right)^3}{b^3}=\left(\dfrac{a+b}{c}\right)^3+\left(\dfrac{b+c}{a}\right)^3+\left(\dfrac{c+a}{b}\right)^3=\left(\dfrac{2c}{c}\right)^3+\left(\dfrac{2a}{a}\right)^3+\left(\dfrac{2b}{b}\right)^3=2^3+2^3+2^3=24\)