Tìm x, biết:
a) (x+1)/(x+2)=(x-3)/(x-5)
b) |x-2|=2x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{3}=\dfrac{4}{12}\Rightarrow x=\dfrac{4}{12}\cdot3=\dfrac{12}{12}=1\)
b) \(\dfrac{x-1}{x-2}=\dfrac{3}{5}\) (Điều kiện : \(x\ne2\))
\(\Rightarrow5\left(x-1\right)=3\left(x-2\right)\)
\(\Leftrightarrow5x-5=3x-6\Leftrightarrow5x-3x=-6+5\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
c) \(2x:6=\dfrac{1}{4}\Leftrightarrow2x=\dfrac{1}{4}\cdot6=\dfrac{6}{4}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{2}:2=\dfrac{3}{2}\cdot\dfrac{1}{2}=\dfrac{3}{4}\)
d) \(\dfrac{x^2+x}{2x^2+1}=\dfrac{1}{2}\)
\(\Rightarrow2\left(x^2+x\right)=2x^2+1\)
\(\Leftrightarrow2x^2+2x=2x^2+1\)
\(\Leftrightarrow2x^2+2x-2x^2=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\).
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a: Ta có: \(2x\left(x-1\right)-2x^2=-6\)
\(\Leftrightarrow2x^2-2x-2x^2=-6\)
\(\Leftrightarrow x=3\)
b: Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a,
(2x-3)-(x-5)=(x+2)-(x-1)
2x-3-x+5=x+2-x+1
x+2=3
x=1
b,
2(x-1)-5(x+2)=-10
2x-2-5x+10=-10
-3x+8=-10
-3x=-18
x=6
a) ( 2x - 3 ) - ( x - 5 ) = ( x + 2 ) - ( x - 1 )
2x - 3 - x + 5 = x + 2 - x + 1
( 2x - x ) + ( 5 - 3 ) = ( x - x ) + ( 2 + 1 )
x + 2 = 3
x = 3 - 2
x = 1
b) 2( x - 1 ) - 5( x + 2 ) = -10
2x - 2.1 - 5x + 5.2 = -10
2x - 2 - 5x + 10 = -10
( 2x - 5x ) + ( 10 - 2 ) = -10
-3x + 8 = -10
-3x = -10 - 8
-3x = -18
x = -18 : -3
x = 6
a)2x.(x+3)-3.(x^2+1)=x+1-x.(x-2)
<=> 2x2 + 6x - 3x2 - 3 = x - 1 - x2 + 2x
<=> 2x2 + 6x - 3x2 - x + x2 - 2x = -1 +3
<=> 3x = 2
<=> x = 2/3
b)(x+2).(x-2)-(x-3).(x+5)=0
<=> x2 - 4 - x2 - 5x - 3x - 15 = 0
<=> -5x - 3x = 4 + 15
<=> -8x = 19
<=> x = -19/8
Phần c tương tự ạ
\(1,A=\left(3x+7\right)\left(2x+3\right)-\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\\ =6x^2+23x+21-2x-3-6x^2-23x+55\\ =73-2x\left(đề.sai\right)\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ 2,\\ a,\Leftrightarrow30x^2+18x+3x-30x^2=7\\ \Leftrightarrow21x=7\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\\ \Leftrightarrow79x=79\Leftrightarrow x=1\\ c,\Leftrightarrow\left(x+5\right)\left(x^2+3x+2\right)-x^3-8x^2=27\\ \Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\\ \Leftrightarrow17x=17\Leftrightarrow x=1\)
\(d,\Leftrightarrow7x-2x^2-3+x^2+x-6=-x^2-x+2\\ \Leftrightarrow9x=11\Leftrightarrow x=\dfrac{11}{9}\)
a.\(\frac{x+1}{x+2}=\frac{x-3}{x-5}\Rightarrow\left(x+1\right)\left(x-5\right)=\left(x+2\right)\left(x-3\right)\)
hay \(x^2-4x-5=x^2-x-6\Leftrightarrow3x=1\Leftrightarrow x=\frac{1}{3}\)
b.\(\left|x-2\right|=2x+1\Rightarrow\orbr{\begin{cases}x-2=2x+1\\2-x=2x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}}\)
thay lại ta có x=1/3 là giá trị duy nhất thỏa mãn
\(\frac{\left(x+1\right)}{\left(x+2\right)}=\frac{\left(x-3\right)}{\left(x-5\right)}\)
\(\Rightarrow\left(x+1\right).\left(x-5\right)=\left(x+2\right).\left(x-3\right)\)
\(\Rightarrow x^2-4x-5=x^2-x-6\)
\(\Rightarrow x^2-x^2-4x+x=-6+5\)
\(\Rightarrow-3x=-1\)
\(\Rightarrow x=1\)