Chứng minh rằng đa thức x2 - 6x +9 không có nghiệm. Giúp mik với !!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6x+12\)
\(=x^2-3x-3x+9+3\)
\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)
\(=x\left(x-3\right)-3\left(x-3\right)+3\)
\(=\left(x-3\right)\left(x-3\right)+3\)
\(=\left(x-3\right)^2+3\)
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3>0\)
Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm
ta có \(x^2+6x+10=x^2+6x+9+1=\left(x^2+6x+9\right)+1\)
\(=\left(x+3\right)^2+1\)
Vì \(\left(x+3\right)^2\ge0\)nên \(\left(x+3\right)^2+1\ge1\)
Vì \(\left(x+3\right)^2+1\ge1\)nên không có nghiệm
Vậy \(x^2+6x+10\)không có nghiệm
\(x^2+6x+10\)
\(=x^2+3x+3x+3.3+1\)
\(=x\left(3+x\right)+3\left(3+x\right)+1\)
\(=\left(3+x\right)\left(3+x\right)+1\)
\(=\left(3x+1\right)^2+1\)
\(\text{Vi}:\left(3+x\right)^2\ge0\)
\(\Rightarrow\left(3+x\right)^2+x>1\)
=> Đa thức ko có nghiệm
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
\(\text{Ta có :}\) \(P\left(x\right)=2y^4+y^2+10\)
\(P\left(x\right)=\left(2y^2\right)^2+y^2+10\)
\(\text{Vì :}\) \(\left(2y^2\right)^2+y^2\ge0\)
\(\Rightarrow P\ge10>0\)
\(\text{Vậy đa thức vô nghiệm vì không có x thoả mãn P(x) = 0}\)
ủa, nếu P(x) = 2y + y + 10 = 3y + 10 thì phải có nghiệm chứ =))
Cho `P(x) = 0`
`=> x^2 - 6x + 12 = 0`
`=> x^2 - 2x . 3 + 3^2 + 3 = 0`
`=> ( x + 3 )^2 = -3` (Vô lí vì `( x + 3 )^2 >= 0` mà `-3 < 0`)
Vậy đa thức `P(x)` không có nghiệm
Cho P(x)=0P(x)=0
⇒x2−6x+12=0⇒x2-6x+12=0
⇒x2−2x.3+32+3=0⇒x2-2x.3+32+3=0
⇒(x+3)2=−3⇒(x+3)2=-3 (Vô lí vì (x+3)2≥0(x+3)2≥0 mà −3<0-3<0)
Vậy đa thức P(x)P(x) không có nghiệm. Chúc bạn học tốt
Ta có:
x2 - 6x + 9 = x2 - 2 . x . 3 + 32 = (x - 3)2
Để pt có nghiệm <=> x2 - 6x + 9 = 0 <=> (x - 3)2 = 0 <=> x = 3.
*Tái bút: Bạn check lại đề nhé chứ thấy cái đề là HĐT thì sao không có nghiệm được?
đáp án