Tập hợp các số nguyên x,y thỏa mãn:
a) xy=x+y b)x+y+xy=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+xy=3\)
\(\Rightarrow x\left(1+y\right)+y=3\)
\(\Rightarrow x\left(1+y\right)+\left(y+1\right)=2\)
\(\Rightarrow\left(1+y\right)\left(x+1\right)=2=2.1=1.2=-1.-2=-2.-1\)
Với \(\orbr{\begin{cases}1+y=2\\x+1=1\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=0\end{cases}}}\)
Với \(\orbr{\begin{cases}1+y=1\\x+1=2\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\x=1\end{cases}}}\)
Với \(\orbr{\begin{cases}1+y=-2\\x+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}y=-3\\x=-2\end{cases}}}\)
với \(\orbr{\begin{cases}1+y=-1\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=-2\\x=-3\end{cases}}}\)
Vậy \(\left(x;y\right)=\left(-3;-2\right);\left(-2;-3\right);\left(0;1\right)\left(1;0\right)\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
a/
$x-y=84\Rightarrow x=84+y$. Thay vào điều kiện đầu tiên thì:
$(84+y)y=1261$
$\Rightarrow y^2+84y-1261=0$
$\Rightarrow (y-13)(y+97)=0$
$\Rightarrow y-13=0$ hoặc $y+97=0$
$\Rightarrow y=13$ hoặc $y=-97$
Nếu $y=13$ thì $x=84+y=84+13=97$
Nếu $y=-97$ thì $x=84+(-97)=-13$
b/
Do $x,y$ nguyên nên $xy-1, y+1$ cũng là số nguyên. Mà tích của chúng bằng $3$ nên ta có các TH sau:
TH1: $y+1=1, xy-1=3\Rightarrow y=0; xy=4$ (vô lý, vì 0 nhân với số nào cũng bằng 0)
TH2: $y+1=-1, xy-1=-3\Rightarrow y=-2; xy=-2\Rightarrow x=1$
TH3: $y+1=3, xy-1=1\Rightarrow y=2; xy=2\Rightarrow x=1$
TH4: $y+1=-3, xy-1=-1\Rightarrow y=-4; xy=0$ (vô lý do $0$ nhân với số nào cũng bằng $0$)
Vậy.........
a) Ta có : \(x+y+xy=0\Rightarrow x+xy+y+1=1\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=1\Rightarrow\left(x+1\right)\left(y+1\right)=1\)
Vậy thì x + 1 và y + 1 phải là ước của 1.
Ta có bảng:
x + 1 | 1 | -1 |
y + 1 | 1 | -1 |
x | 0 | -2 |
y | 0 | -2 |
Vậy ta tìm được các cặp (x;y) = (0 ; 0) và (-2 ; -2).
b)
Ta có : \(x-y-xy=0\Rightarrow x-xy+1-y=1\)
\(\Rightarrow x\left(1-y\right)+\left(1-y\right)=1\Rightarrow\left(x+1\right)\left(1-y\right)=1\)
Vậy thì x + 1 và 1 - y phải là ước của 1.
Ta có bảng:
x + 1 | 1 | -1 |
1 - y | 1 | -1 |
x | 0 | -2 |
y | 0 | 1 |
Vậy ta tìm được các cặp (x;y) thỏa mãn là (0;0) và (-2;1)